×

Special values of the zeta function of an arithmetic surface. (English) Zbl 1523.14040

Let \(\mathcal{X}\) be a regular connected proper scheme over \(Spec(\mathbb{Z})\) and \(\zeta(\mathcal{X},s)\) be its zeta function. The first named author of this paper and B. Morin, Doc. Math. 23, 1425–1560 (2018; Zbl 1404.14024)] made a conjecture on the vanishing order and the leading coefficient of the Taylor’s expansion at \(s=n\in \mathbb{Z}\). In the paper under review, the authors study the case \(n=1\) and \(\mathcal{X}\) is a proper regular flat arithmetic surface, and prove that this conjecture is equivalent to the Birch and Swinnerton-Dyer conjecture for the Jacobina of the generic fiber.
Indeed, the conjecture involved a rather inexplicit correction factor \(C(\mathcal{X},n)\in \mathbb{Q}^{\times}\), to ensure compatibility with the Tamagawa number conjecture of Bloch, Kato, Fontain, and Perrin-Riou. The first step of the proof of the equivalence is to show \(C(\mathcal{X},1)=1\) for arbitrary regular proper arithmetic schemes. For further study on this factor, refer to [M. Flach and B. Morin, Doc. Math. 26, 1633–1677 (2021; Zbl 1487.11065)].
The second step is a different proof of a formula due to Geisser relating the order of the Brauer and the Tate-Shafrevich group, where the authors remove the assumption on the base field to be totally imaginary in [T. H. Geisser, J. Inst. Math. Jussieu 19, No. 3, 965–970 (2020; Zbl 1474.11122)].
Finally, the study of the Neron modules gives the relations of the rest terms involved in these conjectural formulae, which needs the results of Bosch-Liu on components groups and Liu-Lorenzini-Raynaud on tangent spaces.

MSC:

14F20 Étale and other Grothendieck topologies and (co)homologies
14F42 Motivic cohomology; motivic homotopy theory
11G40 \(L\)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture

References:

[1] Beilinson, A., Bernstein, J. and Deligne, P., Faisceaux pervers: Analyse et topologie sur les éspaces singuliers, Astérisque, 100 (Société Mathématique de France, Paris, 1982). · Zbl 1390.14055
[2] Bloch, S., De Rham cohomology and conductors of curves, Duke Math. J.54(2) (1987), 295-308. · Zbl 0632.14018
[3] Bosch, S. and Liu, Q., Rational points of the group of components of a Neron model, Manuscripta Math.98(3) (1999), 275-293. · Zbl 0934.14029
[4] Colliot-Thélène, J. L. and Saito, S., Zéro-cycles sur les variétés p-adiques et groupe de Brauer, Int. Math. Res. Not. IMRN4 (1996), 151-160. · Zbl 0878.14006
[5] Conrad, B., ‘Seminar notes on the Birch and Swinnerton-Dyer conjecture’, 2015, http://virtualmath1.stanford.edu/conrad/BSDseminar/.
[6] Flach, M. and Morin, B., Weil-étale cohomology and Zeta-values of proper regular arithmetic schemes, Doc. Math.23 (2018), 1425-1560. · Zbl 1404.14024
[7] Flach, M. and Morin, B., Deninger’s conjectures and Weil-Arakelov cohomology, Münster J. Math., 13(2) (2020), 519-540. · Zbl 1469.14062
[8] Fujiwara, K., A proof of the absolute purity conjecture (after Gabber), in Algebraic Geometry 2000, Azumino (Hotaka), Advanced Studies in Pure Mathematics, 36 pp. 153-183 (Mathematical Society of Japan, Tokyo, 2002). · Zbl 1059.14026
[9] Geisser, T., Arithmetic cohomology over finite fields and special values of \(\zeta \) -functions, Duke Math. Jour.133(1) (2006), 27-57. · Zbl 1104.14011
[10] Geisser, T., Comparing the Brauer to the Tate-Shafarevich group, J. Inst. Math. Jussieu, 19(3) (2020), 965-970. · Zbl 1474.11122
[11] Gordon, W. J., Linking the conjectures of Artin-Tate and Birch-Swinnerton-Dyer, Compos. Math.38(2) (1979), 163-199. · Zbl 0425.14003
[12] Gross, B. H. and Harris, J., Real algebraic curves, Ann. Sci. Éc. Norm. Supér. (4)14 (1981), 157-182. · Zbl 0533.14011
[13] Grothendieck, A., Techniques de descente et théorèmes d’existence en géométrie algébrique VI, in Les schémas de Picard: propriétés générales, Séminaire Bourbaki, 236, pp. 221-243 (Société Mathématique de France, Paris, 1962). · Zbl 0238.14015
[14] Grothendieck, A., Le groupe de Brauer III: Dix exposés sur la cohomologie des schémas (North Holland, Amsterdam, 1968). · Zbl 0192.57801
[15] Grothendieck, A., Revétements étales et groupe fondamental (SGA 1), Lecture Notes in Mathematics, 224 (Springer, Berlin-Heidelberg, 1971). · Zbl 0234.14002
[16] Grothendieck, A., Artin, M. and Verdier, J. L., Theorie des Topos et Cohomologie Etale des Schemas (SGA 4), Lecture Notes in Mathematics 269, 270, 271 (Springer, Berlin-Heidelberg, 1972). · Zbl 0234.00007
[17] Hartshorne, R., Algebraic Geometry, Graduate Texts in Mathematics, 52 (Springer, New-York, 1977). · Zbl 0367.14001
[18] Hindry, S. and Silverman, J., Diophantine Geometry: An Introduction, Graduate Text in Mathematics, 201 (Springer, New-York, 2000). · Zbl 0948.11023
[19] Hriljac, P., Heights and Arakelov’s intersection theory, Amer. J. Math.107(1) (1985), 23-38. · Zbl 0593.14004
[20] Illusie, L., Complexe cotangent et déformations. I, Lecture Notes in Mathematics, 239 (Springer, Berlin-Heidelberg, 1971). · Zbl 0224.13014
[21] Li, Y., Liu, Y. and Tian, Y., ‘On the Birch and Swinnerton-Dyer conjecture for CM elliptic curves over \(\mathbb{Q} \) ’, Preprint, 2016, https://arxiv.org/abs/1605.01481v1.
[22] Lichtenbaum, S., Duality theorems for curves over \(p\) -adic fields, Invent. Math.7 (1969), 120-136. · Zbl 0186.26402
[23] Liu, Q., Lorenzini, D. and Raynaud, M., Néron models, Lie algebras, and reduction of curves of genus one, Invent. Math.157 (2004), 455-518. · Zbl 1060.14037
[24] Liu, Q., Lorenzini, D. and Raynaud, M., Corrigendum to Néron models, Lie algebras, and reduction of curves of genus one and The Brauer group of a surface, Invent. Math.214 (2018), 593-604. · Zbl 1407.14022
[25] Lurie, J., Higher Algebra, 2017, http://www.math.ias.edu/lurie/papers/HA.pdf.
[26] Milne, J.S., Étale Cohomology, Princeton Mathematical Series, 17 (Princeton University Press, Princeton N.J., 1980). · Zbl 0433.14012
[27] Milne, J.S., Arithmetic Duality Theorems, Perspectives in Mathematics, 1 (Academic Press, Boston, 1986). · Zbl 0613.14019
[28] Poonen, B. and Stoll, M., The Cassels-Tate pairing on polarized abelian varieties, Annals of Math.150 (1999), 1109-1149. · Zbl 1024.11040
[29] Raynaud, M., Spécialisation du foncteur du Picard, Publ. Math. Inst. Hautes Études Sci.38 (1970), 27-76. · Zbl 0207.51602
[30] Saito, S., Arithmetic theory of arithmetic surfaces, Ann. Math.129 (1989), 547-589. · Zbl 0688.14019
[31] Sato, K., \(p\) -adic étale twists and arithmetic duality, Ann. Sci. Éc. Norm. Supér. (4)40(4) (2007), 519-588. · Zbl 1146.14012
[32] Soulé, C., Abramovich, D., Burnol, J.-F. and Kramer, J., Lectures on Arakelov Geometry, (Cambridge University Press, Cambridge U.K., 1992). · Zbl 0812.14015
[33] Spiess, M., Artin-Verdier duality for arithmetic surfaces, Math. Ann.305 (1996), 705-792. · Zbl 0887.14008
[34] , The Stacks Project, 2019, http://stacks.math.columbia.edu.
[35] Tate, J., On the conjecture of Birch and Swinnerton-Dyer and a geometric analogue, Sém. Bourbaki, 306, pp. 1-26 (Société Mathématique de France, Paris, 1966).
[36] Voevodsky, V., Homology of schemes, Selecta Math. (N. S.)2(1) (1996), 111-153. · Zbl 0871.14016
[37] Wan, X., ‘Iwasawa main conjecture for supersingular elliptic curves and BSD conjecture’, Preprint, 2019, https://arXiv.org/abs/1411.6352v6.
[38] Zhong, C., Comparison of dualizing complexes, J. Reine Angew. Math.695 (2014), 1-39. · Zbl 1321.19004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.