×

Adaptive neural asymptotic control for uncertain nonlinear multiagent systems with a fuzzy dead zone constraint. (English) Zbl 1522.93089

Summary: A consensus control scheme is developed for a class of leader-follower multiagent systems with a fuzzy dead zone constraint. Differently from previous work, the method developed implements a predefined convergence of tracking errors for multiagent systems; especially, the dynamic model for each follower has a fuzzy dead zone input. To solve the problem, not only a set of smooth functions are used within the control design to increase the stability of the systems but also the unfuzziness and center-of-gravity method are used to analyze and process the actuator constraint model, where each slope of the dead zone is uncertain and fuzzy. It is verified that the method developed effectively guarantees that the tracking errors of multiagent systems can converge to a predefined interval; that is, the problem of better asymptotic consensus performance for nonlinear multiagent systems is solved. Simulation illustrates the results obtained.

MSC:

93C40 Adaptive control/observation systems
93A16 Multi-agent systems
93C41 Control/observation systems with incomplete information
93C42 Fuzzy control/observation systems
Full Text: DOI

References:

[1] Lin, W.; Nan, W.; Zhu, H., Consensus based distributed unscented information filtering for air mobile sensor networks, (2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010), vol. 2 (2010), IEEE), 492-495
[2] Fax, J. A.; Murray, R. M., Information flow and cooperative control of vehicle formations, IEEE Trans. Autom. Control, 49, 9, 1465-1476 (2004) · Zbl 1365.90056
[3] Abdessameud, A.; Tayebi, A., Attitude synchronization of a group of spacecraft without velocity measurements, IEEE Trans. Autom. Control, 54, 11, 2648 (2009) · Zbl 1367.93413
[4] Baradaran, A. A.; Navi, K., HQCA-WSN: high-quality clustering algorithm and optimal cluster head selection using fuzzy logic in wireless sensor networks, Fuzzy Sets Syst., 389, 114-141 (2019)
[5] Lin, Z.; Francis, B.; Maggiore, M., Necessary and sufficient graphical conditions for formation control of unicycles, IEEE Trans. Autom. Control, 50, 1, 121-127 (2005) · Zbl 1365.93324
[6] Li, Y.; Yang, G., Adaptive neural control of pure-feedback nonlinear systems with event-triggered communications, IEEE Trans. Neural Netw., 29, 12, 6242-6251 (2018)
[7] Lyu, Z.; Liu, Z.; Xie, K.; Chen, C. L.P.; Zhang, Y., Adaptive fuzzy output-feedback control for switched nonlinear systems with stable and unstable unmodeled dynamics, IEEE Trans. Fuzzy Syst., 28, 8, 1825-1839 (2020)
[8] Shi, W.; Li, B., Adaptive fuzzy control for feedback linearizable MIMO nonlinear systems with prescribed performance, Fuzzy Sets Syst., 344, 70-89 (2017) · Zbl 1397.93125
[9] Li, Y.; Yang, G., Observer-based fuzzy adaptive event-triggered control codesign for a class of uncertain nonlinear systems, IEEE Trans. Fuzzy Syst., 26, 3, 1589-1599 (2018)
[10] Xi, C.; Dong, J., Event-triggered adaptive fuzzy distributed tracking control for uncertain nonlinear multi-agent systems, Fuzzy Sets Syst., 402, 35-50 (2021) · Zbl 1464.93042
[11] Chen, C. L.P.; Wen, G.-X.; Liu, Y.-J.; Wang, F.-Y., Adaptive consensus control for a class of nonlinear multiagent time-delay systems using neural networks, IEEE Trans. Neural Netw. Learn. Syst., 25, 6, 1217-1226 (2014)
[12] Chen, C. L.P.; Ren, C. E.; Tao, D., Fuzzy observed-based adaptive consensus tracking control for second-order multiagent systems with heterogeneous nonlinear dynamics, IEEE Trans. Fuzzy Syst., 24, 4, 906-915 (2016)
[13] Wang, F.; Chen, B.; Lin, C.; Li, X., Distributed adaptive neural control for stochastic nonlinear multiagent systems, IEEE Trans. Cybern., 47, 7, 1795-1803 (2016)
[14] Lai, G.; Zhang, Y.; Liu, Z.; Chen, C. L.P., Indirect adaptive fuzzy control design with guaranteed tracking error performance for uncertain canonical nonlinear systems, IEEE Trans. Fuzzy Syst., 27, 6, 1139-1150 (2019)
[15] Jozef, V., Modeling and identification of systems with backlash, Automatica, 46, 2, 369-374 (2010) · Zbl 1205.93036
[16] Lai, G.; Zhi, L.; Yun, Z.; Chen, C. L.P.; Xie, S., Asymmetric actuator backlash compensation in quantized adaptive control of uncertain networked nonlinear systems, IEEE Trans. Neural Netw. Learn. Syst., 28, 2, 1-14 (2015)
[17] Ren, B.; Ge, S. S.; Su, C.-Y.; Lee, T. H., Adaptive neural control for a class of uncertain nonlinear systems in pure-feedback form with hysteresis input, IEEE Trans. Syst. Man Cybern., Part B, Cybern., 39, 2, 431-443 (2009)
[18] Li, Y.; Tong, S.; Li, T., Adaptive fuzzy output feedback control of uncertain nonlinear systems with unknown backlash-like hysteresis, Inf. Sci., 198, 130-146 (2012) · Zbl 1248.93101
[19] Li, H.; Lu, B.; Wang, L.; Qi, Z.; Wang, H., Adaptive neural control of uncertain nonstrict-feedback stochastic nonlinear systems with output constraint and unknown dead zone, IEEE Trans. Syst. Man Cybern. Syst., 47, 8, 2048-2059 (2017)
[20] Tong, S.; Zhang, L.; Li, Y., Observed-based adaptive fuzzy decentralized tracking control for switched uncertain nonlinear large-scale systems with dead zones, IEEE Trans. Syst. Man Cybern. Syst., 46, 1, 37-47 (2016)
[21] Wen, C.; Zhou, J.; Liu, Z.; Su, H., Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance, IEEE Trans. Autom. Control, 56, 7, 1672-1678 (2011) · Zbl 1368.93317
[22] Wang, H.; Chen, B.; Liu, X.; Liu, K.; Lin, C., Robust adaptive fuzzy tracking control for pure-feedback stochastic nonlinear systems with input constraints, IEEE Trans. Cybern., 43, 6, 2093-2104 (2013)
[23] Defoort, M.; Floquet, T.; Kokosy, A.; Perruquetti, W., Sliding-mode formation control for cooperative autonomous mobile robots, IEEE Trans. Ind. Electron., 55, 11, 3944-3953 (2008)
[24] Tsang, K.; Li, G., Robust nonlinear nominal-model following control to overcome deadzone nonlinearities, IEEE Trans. Ind. Electron., 48, 1, 177-184 (2001)
[25] Ibrir, S.; Xie, W. F.; Su, C.-Y., Adaptive tracking of nonlinear systems with non-symmetric dead-zone input, Automatica, 43, 3, 522-530 (2007) · Zbl 1137.93350
[26] Lu, K.; Liu, Z.; Lai, G.; Zhang, Y.; Chen, C. L.P., Adaptive fuzzy tracking control of uncertain nonlinear systems subject to actuator dead zone with piecewise time-varying parameters, IEEE Trans. Fuzzy Syst., 27, 7, 1493-1505 (2019)
[27] Tao, G.; Kokotovic, P., Adaptive control of plants with unknown dead-zones, IEEE Trans. Autom. Control, 39, 1, 59-68 (1994) · Zbl 0796.93070
[28] Lewis, F. L.; Tim, W. K.; Wang, L.-Z.; Li, Z., Deadzone compensation in motion control systems using adaptive fuzzy logic control, IEEE Trans. Control Syst. Technol., 7, 6, 731-742 (1999)
[29] Selmic, R. R.; Lewis, F., Deadzone compensation in motion control systems using neural networks, IEEE Trans. Autom. Control, 45, 4, 602-613 (2000) · Zbl 0989.93068
[30] Zhou, J.; Wen, C.; Zhang, Y., Adaptive output control of nonlinear systems with uncertain dead-zone nonlinearity, IEEE Trans. Autom. Control, 51, 3, 504-511 (2006) · Zbl 1366.93306
[31] Wang, X. S.; Su, C.-Y.; Hong, H., Robust adaptive control of a class of nonlinear systems with unknown dead-zone, Automatica, 40, 3, 407-413 (2004) · Zbl 1036.93036
[32] Wang, F.; Liu, Z.; Zhang, Y.; Chen, B., Distributed adaptive coordination control for uncertain nonlinear multi-agent systems with dead-zone input, J. Franklin Inst., 353, 10, 2270-2289 (2016) · Zbl 1347.93028
[33] Li, S.; Ma, H.; Wang, X.; Li, Z., Semi-parametric decentralised adaptive control of discrete-time nonlinear multi-agent systems, (2018 WRC Symposium on Advanced Robotics and Automation (WRC SARA) (2018), IEEE), 220-225
[34] Jun, Y., Robust guaranteed cost control of uncertain fuzzy systems under time-varying sampling, Appl. Soft Comput., 11, 1, 249-255 (2011)
[35] Khoo, S.; Xie, L.; Man, Z., Robust finite-time consensus tracking algorithm for multirobot systems, IEEE/ASME Trans. Mechatron., 14, 2, 219-228 (2009)
[36] Zhang, H.; Lewis, F. L., Adaptive cooperative tracking control of higher-order nonlinear systems with unknown dynamics, Automatica, 48, 7, 1432-1439 (2012) · Zbl 1348.93144
[37] Zhang, H.; Lewis, F. L.; Qu, Z., Lyapunov, adaptive, and optimal design techniques for cooperative systems on directed communication graphs, IEEE Trans. Ind. Electron., 59, 7, 3026-3041 (2012)
[38] Liu, Y.-J.; Tong, S., Optimal control-based adaptive NN design for a class of nonlinear discrete-time block-triangular systems, IEEE Trans. Cybern., 46, 11, 2670-2680 (2016)
[39] Lu, K.; Liu, Z.; Chen, C. L.P.; Zhang, Y., Event-triggered neural control of nonlinear systems with rate-dependent hysteresis input based on a new filter, IEEE Trans. Neural Netw. Learn. Syst., 31, 4, 1270-1284 (2020)
[40] Li, D.-P.; Li, D.-J.; Liu, Y.-J.; Tong, S.; Chen, C. L.P., Approximation-based adaptive neural tracking control of nonlinear MIMO unknown time-varying delay systems with full state constraints, IEEE Trans. Cybern., 47, 10, 3100-3109 (2017)
[41] Su, Y.; Chen, B.; Lin, C.; Wang, H.; Zhou, S., Adaptive neural control for a class of stochastic nonlinear systems by backstepping approach, Inf. Sci., 369, 748-764 (2016) · Zbl 1429.93188
[42] Wolkenhauer, O., A course in fuzzy systems and control, Int. J. Electr. Eng. Educ., 34, 3, 282 (1997) · Zbl 0910.93002
[43] Wang, L. X.; Mendel, J. M., Fuzzy basis functions, universal approximation, and orthogonal least-squares learning, IEEE Trans. Neural Netw., 3, 5, 807-814 (1992)
[44] Wang, L. X., Stable adaptive fuzzy controllers with application to inverted pendulum tracking, IEEE Trans. Syst. Man Cybern., Part B, Cybern., 26, 5, 677-691 (1996)
[45] Wang, L.-X., Stable adaptive fuzzy control of nonlinear systems, IEEE Trans. Fuzzy Syst., 1, 2, 146-155 (1993)
[46] Chen, B.; Liu, X.; Liu, K.; Lin, C., Direct adaptive fuzzy control of nonlinear strict-feedback systems, Automatica, 45, 6, 1530-1535 (2009) · Zbl 1166.93341
[47] Krstic, M.; Kokotovic, P. V.; Kanellakopoulos, I., Nonlinear and Adaptive Control Design (1995), John Wiley & Sons, Inc. · Zbl 0763.93043
[48] Bechlioulis, C. P.; Rovithakis, G. A., Decentralized robust synchronization of unknown high order nonlinear multi-agent systems with prescribed transient and steady state performance, IEEE Trans. Autom. Control, 62, 1, 123-134 (2016) · Zbl 1359.93190
[49] El-Ferik, S.; Hashim, H. A.; Lewis, F. L., Neuro-adaptive distributed control with prescribed performance for the synchronization of unknown nonlinear networked systems, IEEE Trans. Syst. Man Cybern. Syst., 48, 12, 1-10 (2016)
[50] Macellari, L.; Karayiannidis, Y.; Dimarogonas, D. V., Multi-agent second order average consensus with prescribed transient behavior, IEEE Trans. Autom. Control, 62, 10, 5282-5288 (2017) · Zbl 1390.93059
[51] Lu, K.; Liu, Z.; Lai, G.; Chen, C. L.P.; Zhang, Y., Adaptive consensus tracking control of uncertain nonlinear multiagent systems with predefined accuracy, IEEE Trans. Cybern. (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.