×

Coupling dynamics of 2D notch-delta signalling. (English) Zbl 1522.92019

Summary: Understanding pattern formation driven by cell-cell interactions has been a significant theme in cellular biology for many years. In particular, due to their implications within many biological contexts, lateral-inhibition mechanisms present in the notch-delta signalling pathway led to an extensive discussion between biologists and mathematicians. Deterministic and stochastic models have been developed as a consequence of this discussion, some of which address long-range signalling by considering cell protrusions reaching non-neighbouring cells. The dynamics of such signalling systems reveal intricate properties of the coupling terms involved in these models. In this work, we investigate the advantages and drawbacks of a single-parameter long-range signalling model across diverse scenarios. By employing linear and multi-scale analyses, we discover that pattern selection is not only partially explained but also depends on nonlinear effects that extend beyond the scope of these analytical techniques.

MSC:

92C37 Cell biology
92C15 Developmental biology, pattern formation

References:

[1] Cohen, S. M., Long-range signalling by touch, Nature, 426, 6966, 503-504 (2003)
[2] De Joussineau, C.; Soule, J.; Martin, M.; Anguille, C.; Montcourrier, P.; Alexandre, D., Delta-promoted filopodia mediate long-range lateral inhibition in drosophila, Nature, 426, 6966, 555-559 (2003)
[3] Hamada, H.; Watanabe, M.; Lau, H. E.; Nishida, T.; Hasegawa, T.; Parichy, D. M.; Kondo, S., Involvement of delta/notch signaling in zebrafish adult pigment stripe patterning, Development, 141, 2, 318-324 (2014)
[4] Hunter, G. L.; He, L.; Perrimon, N.; Charras, G.; Giniger, E.; Baum, B., A role for actomyosin contractility in notch signaling, BMC Biol., 17, 1, 1-15 (2019)
[5] Ramírez-Weber, F.-A.; Kornberg, T. B., Cytonemes: cellular processes that project to the principal signaling center in drosophila imaginal discs, Cell, 97, 5, 599-607 (1999)
[6] Gradilla, A.-C.; Guerrero, I., Cytoneme-mediated cell-to-cell signaling during development, Cell Tissue Res., 352, 1, 59-66 (2013)
[7] Kornberg, T. B.; Roy, S., Cytonemes as specialized signaling filopodia, Development, 141, 4, 729-736 (2014)
[8] Sherer, N. M.; Mothes, W., Cytonemes and tunneling nanotubules in cell-cell communication and viral pathogenesis, Trends Cell Biol., 18, 9, 414-420 (2008)
[9] Cohen, M.; Georgiou, M.; Stevenson, N. L.; Miodownik, M.; Baum, B., Dynamic filopodia transmit intermittent delta-notch signaling to drive pattern refinement during lateral inhibition, Dev. Cell, 19, 1, 78-89 (2010)
[10] Cohen, M.; Baum, B.; Miodownik, M., The importance of structured noise in the generation of self-organizing tissue patterns through contact-mediated cell-cell signalling, J. R. Soc. Interface, 8, 59, 787-798 (2010)
[11] Hadjivasiliou, Z.; Hunter, G. L.; Baum, B., A new mechanism for spatial pattern formation via lateral and protrusion-mediated lateral signalling, J. R. Soc. Interface, 13, 124, Article 20160484 pp. (2016)
[12] Hadjivasiliou, Z.; Moore, R. E.; McIntosh, R.; Galea, G. L.; Clarke, J. D.; Alexandre, P., Basal protrusions mediate spatiotemporal patterns of spinal neuron differentiation, Dev. Cell, 49, 6, 907-919 (2019)
[13] Gillespie, D. T., The chemical langevin equation, J. Chem. Phys., 113, 1, 297-306 (2000)
[14] Rudge, T.; Burrage, K., Effects of intrinsic and extrinsic noise can accelerate juxtacrine pattern formation, Bull. Math. Biol., 70, 4, 971-991 (2008) · Zbl 1142.92002
[15] Webb, S. D.; Owen, M. R., Oscillations and patterns in spatially discrete models for developmental intercellular signalling, J. Math. Biol., 48, 4, 444-476 (2004) · Zbl 1058.92008
[16] Zakirov, B.; Charalambous, G.; Thuret, R.; Aspalter, I. M.; Van-Vuuren, K.; Mead, T.; Harrington, K.; Regan, E. R.; Herbert, S. P.; Bentley, K., Active perception during angiogenesis: filopodia speed up notch selection of tip cells in silico and in vivo, Phil. Trans. R. Soc. B, 376, 1821, Article 20190753 pp. (2021)
[17] Turing, A., The chemical basis of morphogenesis, Phil. Trans. R. Soc. B, 237, 641, 37-72 (1952) · Zbl 1403.92034
[18] Vasilopoulos, G.; Painter, K. J., Pattern formation in discrete cell tissues under long range filopodia-based direct cell to cell contact, Math. Biosci., 273, 1-15 (2016) · Zbl 1366.92028
[19] Collier, J. R.; Monk, N. A.; Maini, P. K.; Lewis, J. H., Pattern formation by lateral inhibition with feedback: a mathematical model of delta-notch intercellular signalling, J. Theoret. Biol., 183, 4, 429-446 (1996)
[20] Mogilner, A.; Rubinstein, B., The physics of filopodial protrusion, Biophys. J., 89, 2, 782-795 (2005)
[21] Formosa-Jordan, P.; Ibañes, M., Diffusible ligand and lateral inhibition dynamics for pattern formation, J. Stat. Mech. Theory Exp., 2009, 03, P03019 (2009)
[22] Murray, J., Mathematical Biology II: Spatial Models and Biomedical Applications (2001), Springer New York · Zbl 0967.92015
[23] Eom, D. S.; Bain, E. J.; Patterson, L. B.; Grout, M. E.; Parichy, D. M., Long-distance communication by specialized cellular projections during pigment pattern development and evolution, Elife, 4, Article e12401 pp. (2015)
[24] Kondo, S.; Watanabe, M.; Miyazawa, S., Studies of turing pattern formation in zebrafish skin, Phil. Trans. R. Soc. A, 379, 2213, Article 20200274 pp. (2021)
[25] Binshtok, U.; Sprinzak, D., Modeling the notch response, (Molecular Mechanisms of Notch Signaling (2018), Springer), 79-98
[26] Moreira, J.; Deutsch, A., Pigment pattern formation in zebrafish during late larval stages: A model based on local interactions, Dev. Dyn. Off Pub. Am. Assoc. Anatom., 232, 1, 33-42 (2005)
[27] Marshall, W. F.; Rosenbaum, J. L., Intraflagellar transport balances continuous turnover of outer doublet microtubules: implications for flagellar length control, J. Cell Biol., 155, 3, 405-414 (2001)
[28] Narayanan, P.; Chatterton, P.; Ikeda, A.; Ikeda, S.; Corey, D. P.; Ervasti, J. M.; Perrin, B. J., Length regulation of mechanosensitive stereocilia depends on very slow actin dynamics and filament-severing proteins, Nature Commun., 6, 1, 1-8 (2015)
[29] Koch, M. D.; Fei, C.; Wingreen, N. S.; Shaevitz, J. W.; Gitai, Z., Competitive binding of independent extension and retraction motors explains the quantitative dynamics of type IV pili, Proc. Natl. Acad. Sci., 118, 8, Article e2014926118 pp. (2021)
[30] Patra, S.; Chowdhury, D., Length fluctuations of long cell protrusions: statistics of passage times, random and extremal excursions (2020), arXiv preprint arXiv:2008.09851
[31] Patra, S.; Chowdhury, D.; Jülicher, F., Length control of long cell protrusions: rulers, timers and transport, Phys. Rep., 987, 1-51 (2022)
[32] Kac, M., A stochastic model related to the telegrapher’s equation, Rocky Mountain J. Math., 4, 3, 497-509 (1974) · Zbl 0314.60052
[33] Bena, I.; Van den Broeck, C.; Kawai, R.; Lindenberg, K., Nonlinear response with dichotomous noise, Phys. Rev. E, 66, 4, Article 045603 pp. (2002)
[34] Kolesnik, A. D.; Ratanov, N., Telegraph Processes and Option Pricing, Vol. 204 (2013), Springer · Zbl 1285.60001
[35] López, O.; Ratanov, N., On the asymmetric telegraph processes, J. Appl. Probab., 51, 2, 569-589 (2014) · Zbl 1304.60079
[36] Barik, D.; Ghosh, P. K.; Ray, D. S., Langevin dynamics with dichotomous noise; direct simulation and applications, J. Stat. Mech. Theory Exp., 2006, 03, P03010 (2006)
[37] Gillespie, D. T., A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys., 22, 4, 403-434 (1976)
[38] Gillespie, D. T., Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem., 81, 25, 2340-2361 (1977)
[39] Perez-Carrasco, R.; Guerrero, P.; Briscoe, J.; Page, K. M., Intrinsic noise profoundly alters the dynamics and steady state of morphogen-controlled bistable genetic switches, PLoS Comput. Biol., 12, 10, Article e1005154 pp. (2016)
[40] Wearing, H. J.; Owen, M. R.; Sherratt, J. A., Mathematical modelling of juxtacrine patterning, Bull. Math. Biol., 62, 2, 293-320 (2000) · Zbl 1323.92032
[41] Thattai, M.; Van Oudenaarden, A., Intrinsic noise in gene regulatory networks, Proc. Natl. Acad. Sci., 98, 15, 8614-8619 (2001)
[42] Engblom, S., Stochastic simulation of pattern formation in growing tissue: a multilevel approach, Bull. Math. Biol., 81, 8, 3010-3023 (2019) · Zbl 1422.92037
[43] Wiggins, S.; Wiggins, S.; Golubitsky, M., Introduction To Applied Nonlinear Dynamical Systems and Chaos, Vol. 2 (2003), Springer · Zbl 1027.37002
[44] Kuznetsov, Y. A.; Kuznetsov, I. A.; Kuznetsov, Y., Elements of Applied Bifurcation Theory, vol. 112 (1998), Springer · Zbl 0914.58025
[45] Markakis, M.; Douris, P., An efficient center manifold technique for hopf bifurcation of n-dimensional multi-parameter systems, Appl. Math. Model., 50, 300-313 (2017) · Zbl 1476.70077
[46] Sattinger, D., Group representation theory, bifurcation theory and pattern formation, J. Funct. Anal., 28, 1, 58-101 (1978) · Zbl 0416.47027
[47] Meijer, H. G.; Dercole, F.; Oldeman, B. E., Numerical bifurcation analysis. (2009)
[48] Marszalek, W.; Podhaisky, H.; Sadecki, J., Computing two-parameter bifurcation diagrams for oscillating circuits and systems, IEEE Access, 7, 115829-115835 (2019)
[49] Owen, M. R.; Sherratt, J. A., Mathematical modelling of juxtacrine cell signalling, Math. Biosci., 153, 2, 125-150 (1998) · Zbl 0940.92009
[50] Teomy, E.; Kessler, D. A.; Levine, H., Ordered hexagonal patterns via notch-delta signaling, Phys. Biol., 18, 6, Article 066006 pp. (2021)
[51] Chen, J. S.; Gumbayan, A. M.; Zeller, R. W.; Mahaffy, J. M., An expanded notch-delta model exhibiting long-range patterning and incorporating microrna regulation, PLoS Comput. Biol., 10, 6, Article e1003655 pp. (2014)
[52] Fujimura, K., Methods of centre manifold and multiple scales in the theory of weakly nonlinear stability for fluid motions, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 434, 1892, 719-733 (1991) · Zbl 0746.76047
[53] Sanchez, N. E., The method of multiple scales: asymptotic solutions and normal forms for nonlinear oscillatory problems, J. Symbolic Comput., 21, 2, 245-252 (1996) · Zbl 0851.68056
[54] Nayfeh, A. H., Perturbation Methods (2008), John Wiley & Sons
[55] Luongo, A., On the use of the multiple scale method in solving ‘difficult’bifurcation problems, Math. Mech. Solids, 22, 5, 988-1004 (2017) · Zbl 1371.74133
[56] O’Dea, R. D.; King, J. R., Multiscale analysis of pattern formation via intercellular signalling, Math. Biosci., 231, 2, 172-185 (2011) · Zbl 1214.92006
[57] O’Dea, R. D.; King, J. R., Continuum limits of pattern formation in hexagonal-cell monolayers, J. Math. Biol., 64, 579-610 (2012) · Zbl 1284.92024
[58] Plahte, E., Pattern formation in discrete cell lattices, J. Math. Biol., 43, 5, 411-445 (2001) · Zbl 0993.92004
[59] Plahte, E.; Øyehaug, L., Pattern-generating travelling waves in a discrete multicellular system with lateral inhibition, Physica D, 226, 2, 117-128 (2007)
[60] Stuart, J., On the non-linear mechanics of wave disturbances in stable and unstable parallel flows part 1. The basic behaviour in plane poiseuille flow, J. Fluid Mech., 9, 3, 353-370 (1960) · Zbl 0096.21102
[61] Watson, J., On the non-linear mechanics of wave disturbances in stable and unstable parallel flows part 2. The development of a solution for plane poiseuille flow and for plane couette flow, J. Fluid Mech., 9, 3, 371-389 (1960) · Zbl 0096.21103
[62] Wollkind, D. J.; Manoranjan, V. S.; Zhang, L., Weakly nonlinear stability analyses of prototype reaction-diffusion model equations, Siam Rev., 36, 2, 176-214 (1994) · Zbl 0808.35056
[63] Crawford, J. D., Introduction to bifurcation theory, Rev. Modern Phys., 63, 4, 991 (1991)
[64] Stefanou, I.; Alevizos, S., Fundamentals of bifurcation theory and stability analysis, Instabilities Modeling in Geomechanics, 31-71 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.