×

A PDE approach to the prediction of a binary sequence with advice from two history-dependent experts. (English) Zbl 1522.91021

Summary: The prediction of a binary sequence is a classic example of online machine learning. We like to call it the “stock prediction problem”, viewing the sequence as the price history of a stock that goes up or down one unit at each time step. In this problem, an investor has access to the predictions of two or more “experts”, and strives to minimize her final-time regret with respect to the best-performing expert. Probability plays no role; rather, the market is assumed to be adversarial. We consider the case when there are two history-dependent experts, whose predictions are determined by the \(d\) most recent stock moves. Focusing on an appropriate continuum limit and using methods from optimal control, graph theory, and partial differential equations, we discuss strategies for the investor and the adversarial market, and we determine associated upper and lower bounds for the investor’s final-time regret. When \(d \leq 4\) our upper and lower bounds coalesce, so the proposed strategies are asymptotically optimal. Compared to other recent applications of partial differential equations to prediction, ours has a new element: there are two timescales, since the recent history changes at every step whereas regret accumulates more slowly.
{© 2022 Wiley Periodicals LLC.}

MSC:

91A10 Noncooperative games
91A05 2-person games
91A20 Multistage and repeated games
35Q91 PDEs in connection with game theory, economics, social and behavioral sciences

References:

[1] Andoni, A.; Panigrahy, R.A differential equations approach to optimizing regret trade‐offs. Preprint, 2013. arXiv: 1305.1359 [cs.LG]
[2] Antunovic, T.; Peres, Y.; Sheffield, S.; Somersille, S.Tug‐of‐war and infinity Laplace equation with vanishing Neumann boundary condition. Comm. Partial Differential Equations37 (2012), no. 10, 1839-1869. doi: https://doi.org/10.1080/03605302.2011.642450 · Zbl 1268.35065 · doi:10.1080/03605302.2011.642450
[3] Armstrong, S. N.; Smart, C. K.A finite difference approach to the infinity Laplace equation and tug‐of‐war games. Trans. Amer. Math. Soc.364 (2012), no. 2, 595-636. doi: https://doi.org/10.1090/S0002-9947-2011-05289-X · Zbl 1239.91011 · doi:10.1090/S0002-9947-2011-05289-X
[4] Calder, J.; Drenska, N. Online prediction with history‐dependent experts: the general case. Comm. Pure Appl. Math., forthcoming. doi: 10.1002/cpa.22049 · Zbl 1459.91171
[5] Calder, J.; Drenska, N.Asymptotically optimal strategies for online prediction with history‐dependent experts. J. Fourier Anal. Appl.27 (2021), no. 2, 1-20. doi: https://doi.org/10.1007/s00041-021-09815-4 · Zbl 1459.91171 · doi:10.1007/s00041-021-09815-4
[6] Cesa‐Bianchi, N.; Lugosi, G.On prediction of individual sequences. Ann. Statist.27 (1999), no. 6, 1865-1895. doi: https://doi.org/10.1214/aos/1017939242 · Zbl 0961.62081 · doi:10.1214/aos/1017939242
[7] Cesa‐Bianchi, N.; Lugosi, G.Potential‐based algorithms in on‐line prediction and game theory. Machine Learning51 (2003), 239-261. doi: https://doi.org/10.1023/A:1022901500417 · Zbl 1026.68152 · doi:10.1023/A:1022901500417
[8] Cesa‐Bianchi, N.; Lugosi, G.Prediction, learning, and games. Cambridge University Press, New York, 2006. · Zbl 1114.91001
[9] Cover, T. Behaviour of sequential predictors of binary sequences. Proceedings of the Fourth Prague Conference on Information Theory, Statistical Decision Functions, and Random Processes, 263-272. Publishing House of the Czechoslovak Academy of Sciences, Prague, 1965.
[10] Dieudonné, J.Foundations of modern analysis. Academic Press, 1960. · Zbl 0100.04201
[11] Drenska, N.; Kohn, R. V.Prediction with expert advice: A PDE perspective. J. Nonlinear Sci.30 (2020), no. 1, 137-173. doi: https://doi.org/10.1007/s00332-019-09570-3 · Zbl 1439.35484 · doi:10.1007/s00332-019-09570-3
[12] Fredricksen, H.A new look at the de Bruijn graph. Discrete Appl. Math.37/38 (1992), 193-203. doi: https://doi.org/10.1016/0166-218X(92)90133-U · Zbl 0760.05047 · doi:10.1016/0166-218X(92)90133-U
[13] Freund, Y.; Opper, M.Drifting games and Brownian motion. J. Comput. System Sci.64 (2002), no. 1, 113-132. doi: https://doi.org/10.1006/jcss.2001.1802 · Zbl 1052.68147 · doi:10.1006/jcss.2001.1802
[14] Giga, Y.Surface evolution equations. A level set approach. Monographs in Mathematics, 99. Birkhäuser, Basel, 2006. · Zbl 1096.53039
[15] Kapralov, M.; Panigrahy, R.Prediction strategies without loss. Advances in Neural Information Processing Systems24, 828-836. Curran Associates, 2011.
[16] Kobzar, V. A.; Kohn, R. V.; Wang, Z. New potential‐based bounds for prediction with expert advice. Proceedings of Thirty Third Conference on Learning Theory, 2370-2405. Proceedings of Machine Learning Research, 125, 2020.
[17] Kobzar, V. A.; Kohn, R. V.; Wang, Z. New potential‐based bounds for the geometric‐stopping version of prediction with expert advice. Proceedings of the First Mathematical and Scientific Machine Learning Conference, 537-554. Proceedings of Machine Learning Research, 107, 2020.
[18] Kohn, R. V.; Serfaty, S.A deterministic‐control‐based approach motion by curvature. Comm. Pure Appl. Math.59 (2006), no. 3, 344-407. doi: https://doi.org/10.1002/cpa.20101 · Zbl 1206.53072 · doi:10.1002/cpa.20101
[19] Kohn, R. V.; Serfaty, S.A deterministic‐control‐based approach to fully nonlinear parabolic and elliptic equations. Comm. Pure Appl. Math.63 (2010), no. 10, 1298-1350. doi: https://doi.org/10.1002/cpa.20336 · Zbl 1204.35070 · doi:10.1002/cpa.20336
[20] Lewicka, M.; Manfredi, J. J.The obstacle problem for the p‐Laplacian via optimal stopping of tug‐of‐war games. Probab. Theory Related Fields167 (2017), 349-378. doi: https://doi.org/10.1007/s00440-015-0684-y · Zbl 1358.60058 · doi:10.1007/s00440-015-0684-y
[21] Peres, Y.; Schramm, O.; Sheffield, S.; Wilson, D. B.Tug‐of‐war and the infinity Laplacian. J. Amer. Math. Soc.22 (2009), no. 1, 167-210. doi: https://doi.org/10.1090/S0894-0347-08-00606-1 · Zbl 1206.91002 · doi:10.1090/S0894-0347-08-00606-1
[22] Peres, Y.; Sheffield, S.Tug‐of‐war with noise: A game‐theoretic view of the p‐Laplacian. Duke Math. J.145 (2008), no. 1, 91-120. doi: https://doi.org/10.1215/00127094-2008-048 · Zbl 1206.35112 · doi:10.1215/00127094-2008-048
[23] Rokhlin, D. B.PDE approach to the problem of online prediction with expert advice: a construction of potential‐based strategies. Int. J. Pure Appl. Math.114 (2017), no. 4, 907-915. doi: https://doi.org/10.12732/ijpam.v114i4.20 · doi:10.12732/ijpam.v114i4.20
[24] West, D. B.Introduction to Graph Theory. Second edition. Prentice Hall, Upper Saddle River, NJ, 2001.
[25] Zhu, K.Two Problems in Applications of PDE. Ph.D. thesis, New York University, 2014.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.