×

KLT factorization of nonrelativistic string amplitudes. (English) Zbl 1522.83355

Summary: We continue our study of the Kawai-Lewellen-Tye (KLT) factorization of winding string amplitudes in [J. Gomis et al., J. High Energy Phys. 2021, No. 6, Paper No. 57, 36 p. (2021; Zbl 1466.83122)]. In a toroidal compactification, amplitudes for winding closed string states factorize into products of amplitudes for open strings ending on an array of D-branes localized in the compactified directions; the specific D-brane configuration is determined by the closed string data. In this paper, we study a zero Regge slope limit of the KLT relations between winding string amplitudes. Such a limit of string theory requires a critically tuned Kalb-Ramond field in a compact direction, and leads to a self-contained corner called nonrelativistic string theory. This theory is unitary, ultraviolet complete, and its string spectrum and spacetime S-matrix satisfy nonrelativistic symmetry. Moreover, the asymptotic closed string states in nonrelativistic string theory necessarily carry nonzero windings. First, starting with relativistic string theory, we construct a KLT factorization of amplitudes for winding closed strings in the presence of a critical Kalb-Ramond field. Then, in the zero Regge limit, we uncover a KLT relation for amplitudes in nonrelativistic string theory. Finally, we show how such a relation can be reproduced from first principles in a purely nonrelativistic string theory setting. We will also discuss connections to the amplitudes of string theory in the discrete light cone quantization (DLCQ), a method that is relevant for Matrix theory.

MSC:

83E30 String and superstring theories in gravitational theory
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C27 Lattice gravity, Regge calculus and other discrete methods in general relativity and gravitational theory
81T13 Yang-Mills and other gauge theories in quantum field theory

Citations:

Zbl 1466.83122

References:

[1] Gomis, J.; Yan, Z.; Yu, M., KLT factorization of winding string amplitudes, JHEP, 06, 057 (2021) · Zbl 1466.83122 · doi:10.1007/JHEP06(2021)057
[2] Kawai, H.; Lewellen, DC; Tye, SHH, A relation between tree amplitudes of closed and open strings, Nucl. Phys. B, 269, 1 (1986) · doi:10.1016/0550-3213(86)90362-7
[3] Bern, Z.; Carrasco, JJM; Johansson, H., New relations for gauge-theory amplitudes, Phys. Rev. D, 78 (2008) · doi:10.1103/PhysRevD.78.085011
[4] Bjerrum-Bohr, NEJ; Damgaard, PH; Sondergaard, T.; Vanhove, P., The momentum kernel of gauge and gravity theories, JHEP, 01, 001 (2011) · Zbl 1214.81145 · doi:10.1007/JHEP01(2011)001
[5] Cachazo, F.; He, S.; Yuan, EY, Scattering equations and matrices: from Einstein to Yang-Mills, DBI and NLSM, JHEP, 07, 149 (2015) · Zbl 1388.83196 · doi:10.1007/JHEP07(2015)149
[6] He, S.; Schlotterer, O., New relations for gauge-theory and gravity amplitudes at loop level, Phys. Rev. Lett., 118 (2017) · doi:10.1103/PhysRevLett.118.161601
[7] Bern, Z.; Dixon, LJ; Perelstein, M.; Rozowsky, JS, Multileg one loop gravity amplitudes from gauge theory, Nucl. Phys. B, 546, 423 (1999) · Zbl 0953.83006 · doi:10.1016/S0550-3213(99)00029-2
[8] Li, Y.; Hang, Y-F; He, H-J; He, S., Scattering amplitudes of Kaluza-Klein strings and extended massive double-copy, JHEP, 02, 120 (2022) · Zbl 1522.83342 · doi:10.1007/JHEP02(2022)120
[9] Klebanov, IR; Maldacena, JM, (1 + 1)-dimensional NCOS and its U(N) gauge theory dual, Adv. Theor. Math. Phys., 4, 283 (2000) · Zbl 1013.81044 · doi:10.4310/ATMP.2000.v4.n2.a3
[10] Gomis, J.; Ooguri, H., Nonrelativistic closed string theory, J. Math. Phys., 42, 3127 (2001) · Zbl 1036.81030 · doi:10.1063/1.1372697
[11] Danielsson, UH; Guijosa, A.; Kruczenski, M., IIA/B, wound and wrapped, JHEP, 10, 020 (2000) · Zbl 0965.81056 · doi:10.1088/1126-6708/2000/10/020
[12] Seiberg, N.; Susskind, L.; Toumbas, N., Strings in background electric field, space/time noncommutativity and a new noncritical string theory, JHEP, 06, 021 (2000) · Zbl 0989.81608 · doi:10.1088/1126-6708/2000/06/021
[13] Gopakumar, R.; Maldacena, JM; Minwalla, S.; Strominger, A., S duality and noncommutative gauge theory, JHEP, 06, 036 (2000) · Zbl 0989.81125 · doi:10.1088/1126-6708/2000/06/036
[14] Bergshoeff, E.; Gomis, J.; Yan, Z., Nonrelativistic string theory and T-duality, JHEP, 11, 133 (2018) · Zbl 1404.83113 · doi:10.1007/JHEP11(2018)133
[15] Klusoň, J., Note about T-duality of non-relativistic string, JHEP, 08, 074 (2019) · Zbl 1421.83117 · doi:10.1007/JHEP08(2019)074
[16] Bergshoeff, EA; Gomis, J.; Rosseel, J.; Şimşek, C.; Yan, Z., String theory and string Newton-Cartan geometry, J. Phys. A, 53 (2020) · Zbl 1511.83050 · doi:10.1088/1751-8121/ab56e9
[17] Gomis, J.; Yan, Z.; Yu, M., T-duality in nonrelativistic open string theory, JHEP, 02, 087 (2021) · Zbl 1460.83096 · doi:10.1007/JHEP02(2021)087
[18] Harmark, T.; Hartong, J.; Obers, NA, Nonrelativistic strings and limits of the AdS/CFT correspondence, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.086019
[19] Klusoň, J., Remark about non-relativistic string in Newton-Cartan background and null reduction, JHEP, 05, 041 (2018) · Zbl 1391.81167 · doi:10.1007/JHEP05(2018)041
[20] Harmark, T.; Hartong, J.; Menculini, L.; Obers, NA; Oling, G., Relating non-relativistic string theories, JHEP, 11, 071 (2019) · Zbl 1429.83091 · doi:10.1007/JHEP11(2019)071
[21] Harmark, T.; Hartong, J.; Menculini, L.; Obers, NA; Yan, Z., Strings with non-relativistic conformal symmetry and limits of the AdS/CFT correspondence, JHEP, 11, 190 (2018) · Zbl 1405.83062 · doi:10.1007/JHEP11(2018)190
[22] Pauli, HC; Brodsky, SJ, Discretized light cone quantization: solution to a field theory in one space one time dimensions, Phys. Rev. D, 32, 2001 (1985) · doi:10.1103/PhysRevD.32.2001
[23] Banks, T.; Fischler, W.; Shenker, SH; Susskind, L., M theory as a matrix model: A conjecture, Phys. Rev. D, 55, 5112 (1997) · Zbl 1156.81433 · doi:10.1103/PhysRevD.55.5112
[24] L. Motl, Proposals on nonperturbative superstring interactions, hep-th/9701025 [INSPIRE].
[25] Banks, T.; Seiberg, N., Strings from matrices, Nucl. Phys. B, 497, 41 (1997) · Zbl 0934.81035 · doi:10.1016/S0550-3213(97)00278-2
[26] Dijkgraaf, R.; Verlinde, EP; Verlinde, HL, Matrix string theory, Nucl. Phys. B, 500, 43 (1997) · Zbl 0934.81044 · doi:10.1016/S0550-3213(97)00326-X
[27] Andringa, R.; Bergshoeff, E.; Gomis, J.; de Roo, M., ’Stringy’ Newton-Cartan gravity, Class. Quant. Grav., 29 (2012) · Zbl 1258.83041 · doi:10.1088/0264-9381/29/23/235020
[28] Gomis, J.; Oh, J.; Yan, Z., Nonrelativistic string theory in background fields, JHEP, 10, 101 (2019) · Zbl 1427.83102 · doi:10.1007/JHEP10(2019)101
[29] Yan, Z.; Yu, M., Background field method for nonlinear sigma models in nonrelativistic string theory, JHEP, 03, 181 (2020) · Zbl 1435.83190 · doi:10.1007/JHEP03(2020)181
[30] Gallegos, AD; Gürsoy, U.; Zinnato, N., Torsional Newton Cartan gravity from non-relativistic strings, JHEP, 09, 172 (2020) · Zbl 1454.83131 · doi:10.1007/JHEP09(2020)172
[31] Gallegos, AD; Gürsoy, U.; Verma, S.; Zinnato, N., Non-Riemannian gravity actions from double field theory, JHEP, 06, 173 (2021) · Zbl 1466.83077 · doi:10.1007/JHEP06(2021)173
[32] Bergshoeff, EA; Lahnsteiner, J.; Romano, L.; Rosseel, J.; Şimşek, C., A non-relativistic limit of NS-NS gravity, JHEP, 06, 021 (2021) · Zbl 1466.83072 · doi:10.1007/JHEP06(2021)021
[33] Yan, Z., Torsional deformation of nonrelativistic string theory, JHEP, 09, 035 (2021) · Zbl 1472.83097 · doi:10.1007/JHEP09(2021)035
[34] Bidussi, L.; Harmark, T.; Hartong, J.; Obers, NA; Oling, G., Torsional string Newton-Cartan geometry for non-relativistic strings, JHEP, 02, 116 (2022) · Zbl 1522.83321 · doi:10.1007/JHEP02(2022)116
[35] Gomis, J.; Gomis, J.; Kamimura, K., Non-relativistic superstrings: a new soluble sector of AdS_5× S^5, JHEP, 12, 024 (2005) · doi:10.1088/1126-6708/2005/12/024
[36] Park, J-H, Green-Schwarz superstring on doubled-yet-gauged spacetime, JHEP, 11, 005 (2016) · Zbl 1390.83352 · doi:10.1007/JHEP11(2016)005
[37] Blair, CDA, A worldsheet supersymmetric Newton-Cartan string, JHEP, 10, 266 (2019) · Zbl 1427.83095 · doi:10.1007/JHEP10(2019)266
[38] Bergshoeff, EA; Lahnsteiner, J.; Romano, L.; Rosseel, J.; Simsek, C., Non-relativistic ten-dimensional minimal supergravity, JHEP, 12, 123 (2021) · Zbl 1487.83143 · doi:10.1007/JHEP12(2021)123
[39] Ko, SM; Melby-Thompson, C.; Meyer, R.; Park, J-H, Dynamics of perturbations in double field theory & non-relativistic string theory, JHEP, 12, 144 (2015) · Zbl 1388.83020
[40] K. Morand and J.-H. Park, Classification of non-Riemannian doubled-yet-gauged spacetime, Eur. Phys. J. C77 (2017) 685 [Erratum ibid.78 (2018) 901] [arXiv:1707.03713] [INSPIRE].
[41] Blair, CDA; Oling, G.; Park, J-H, Non-Riemannian isometries from double field theory, JHEP, 04, 072 (2021) · Zbl 1462.83066 · doi:10.1007/JHEP04(2021)072
[42] Gomis, J.; Yan, Z.; Yu, M., Nonrelativistic open string and Yang-Mills theory, JHEP, 03, 269 (2021) · Zbl 1461.83080 · doi:10.1007/JHEP03(2021)269
[43] S. Eber, H.-Y. Sun and Z. Yan, Dual D-brane actions in nonrelativistic string theory, arXiv:2112.09316 [INSPIRE].
[44] J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, U.K. (2007) [INSPIRE]. · Zbl 1246.81199
[45] Seiberg, N.; Witten, E., String theory and noncommutative geometry, JHEP, 09, 032 (1999) · Zbl 0957.81085 · doi:10.1088/1126-6708/1999/09/032
[46] Danielsson, UH; Guijosa, A.; Kruczenski, M., Newtonian gravitons and D-brane collective coordinates in wound string theory, JHEP, 03, 041 (2001) · doi:10.1088/1126-6708/2001/03/041
[47] Seiberg, N., Why is the matrix model correct?, Phys. Rev. Lett., 79, 3577 (1997) · Zbl 0946.81062 · doi:10.1103/PhysRevLett.79.3577
[48] Bilal, A., A Comment on compactification of M-theory on an (almost) lightlike circle, Nucl. Phys. B, 521, 202 (1998) · Zbl 1047.81541 · doi:10.1016/S0550-3213(98)00203-X
[49] M. B. Green, J. H. Schwarz and E. Witten, Superstring Theory Vol. 2: 25th Anniversary Edition, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, U.K. (2012) [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.