×

Generalised spectral dimensions in non-perturbative quantum gravity. (English) Zbl 1522.83077

Summary: The seemingly universal phenomenon of scale-dependent effective dimensions in non-perturbative theories of quantum gravity has been shown to be a potential source of quantum gravity phenomenology. The scale-dependent effective dimension from quantum gravity has only been considered for scalar fields. It is, however, possible that the non-manifold like structures, that are expected to appear near the Planck scale, have an effective dimension that depends on the type of field under consideration. To investigate this question, we have studied the spectral dimension associated to the Laplace-Beltrami operator generalised to \(k\)-form fields on spatial slices of the non-perturbative model of quantum gravity known as causal dynamical triangulations. We have found that the two-form, tensor and dual scalar spectral dimensions exhibit a flow between two scales at which an effective dimension appears. However, the one-form and vector spectral dimensions show only a single effective dimension. The fact that the one-form and vector spectral dimension do not show a flow of the effective dimension can potentially be related to the absence of a dispersion relation for the electromagnetic field, but dynamically generated instead of as an assumption.

MSC:

83C45 Quantization of the gravitational field
83C15 Exact solutions to problems in general relativity and gravitational theory
62D20 Causal inference from observational studies
37C45 Dimension theory of smooth dynamical systems
47A10 Spectrum, resolvent
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
52C15 Packing and covering in \(2\) dimensions (aspects of discrete geometry)
83C50 Electromagnetic fields in general relativity and gravitational theory

References:

[1] Carlip, S., Dimension and dimensional reduction in quantum gravity, Class. Quantum Grav., 34 (2017) · Zbl 1373.83002 · doi:10.1088/1361-6382/aa8535
[2] Carlip, S., Dimension and dimensional reduction in quantum gravity, Universe, 5, 83 (2019) · doi:10.3390/universe5030083
[3] Petr, Hořava, Spectral dimension of the universe in quantum gravity at a Lifshitz point, Phys. Rev. Lett., 102 (2009) · doi:10.1103/PhysRevLett.102.161301
[4] Eckstein, M.; Trześniewski, T., Spectral dimensions and dimension spectra of quantum spacetimes, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.086003
[5] Calcagni, G., Quantum Gravity and Gravitational-Wave Astronomy, pp 1-27 (2020), Singapore: Springer, Singapore
[6] Calcagni, G.; Kuroyanagi, S.; Marsat, S.; Sakellariadou, M.; Tamanini, N.; Tasinato, G., Gravitational-wave luminosity distance in quantum gravity, Phys. Lett. B, 798 (2019) · doi:10.1016/j.physletb.2019.135000
[7] Calcagni, G.; Kuroyanagi, S.; Marsat, S.; Sakellariadou, M.; Tamanini, N.; Tasinato, G., Quantum gravity and gravitational-wave astronomy, JCAP10(2019)012 (2019) · Zbl 1515.83093 · doi:10.1088/1475-7516/2019/10/012
[8] Calcagni, G.; Oriti, D.; Johannes, T., Laplacians on discrete and quantum geometries, Class. Quantum Grav., 30 (2013) · Zbl 1271.83028 · doi:10.1088/0264-9381/30/12/125006
[9] Ambjørn, J.; Jurkiewicz, J.; Loll, R., The spectral dimension of the universe is scale dependent, Phys. Rev. Lett., 95 (2005) · doi:10.1103/PhysRevLett.95.171301
[10] Ambjørn, J.; Görlich, A.; Jurkiewicz, J.; Loll, R., Nonperturbative quantum gravity, Phys. Rep., 519, 127-210 (2012) · doi:10.1016/j.physrep.2012.03.007
[11] Loll, R., Quantum gravity from causal dynamical triangulations: a review, Class. Quantum Grav., 37 (2019) · Zbl 1478.83095 · doi:10.1088/1361-6382/ab57c7
[12] Ambjorn, J.; Drogosz, Z.; Gizbert-Studnicki, J.; Görlich, A.; Jurkiewicz, J.; Dániel, N., CDT quantum toroidal spacetimes: an overview, Universe, 7, 79 (2021) · doi:10.3390/universe7040079
[13] Munkres, J. R., Elements of Algebraic Topology (1984), Reading, MA: Addison-Wesley, Reading, MA · Zbl 0673.55001
[14] Ambjørn, J.; Jurkiewicz, J.; Loll, R., Reconstructing the universe, Phys. Rev. D, 72 (2005) · doi:10.1103/PhysRevD.72.064014
[15] Regge, T., General Relativity Without Coordinates, Nuovo Cimento, 19, 558-71 (1961) · doi:10.1007/BF02733251
[16] Ambjørn, J.; Gizbert-Studnicki, J.; Jurkiewicz, J.; Görlich, A.; Németh, D., The phase structure of causal dynamical triangulations with toroidal spatial topology, J. High Energy Phys., JHEP06(2018)111 (2018) · Zbl 1395.83022 · doi:10.1007/JHEP06(2018)111
[17] Ambjørn, J.; Görlich, A.; Jurkiewicz, J.; Loll, R., Nonperturbative quantum de Sitter universe, Phys. Rev. D, 78 (2008) · doi:10.1103/PhysRevD.78.063544
[18] Ambjrn, J.; Drogosz, Z.; Gizbert-Studnicki, J.; Görlich, A.; Jurkiewicz, J.; Nemeth, D., Impact of topology in causal dynamical triangulations quantum gravity, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.044010
[19] Ambjørn, J.; Görlich, A.; Jurkiewicz, J.; Loll, R., Geometry of the quantum universe, Phys. Lett. B, 690, 420-6 (2010) · doi:10.1016/j.physletb.2010.05.062
[20] Ambjorn, J.; Drogosz, Z.; Görlich, A.; Jurkiewicz, J., Properties of dynamical fractal geometries in the model of causal dynamical triangulations, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.086022
[21] Ambjørn, J.; Gizbert-Studnicki, J.; Görlich, A.; Németh, D., Topology induced first-order phase transitions in lattice quantum gravity, J. High Energy Phys., JHEP06(2018)111 (2022) · Zbl 1522.83021 · doi:10.1007/JHEP04(2022)103
[22] Craioveanu, M.; Puta, M.; Rassias, T. M., Old and New Aspects in Spectral Geometry (2001), Dordrecht: Springer, Dordrecht · Zbl 0987.58013
[23] Yue, H., A lower bound for the first eigenvalue in the laplacian operator on compact Riemannian manifolds, J. Geom. Phys., 71, 73-84 (2013) · Zbl 1278.35166 · doi:10.1016/j.geomphys.2013.03.014
[24] Reitz, M.; Bianconi, G., The higher-order spectrum of simplicial complexes: a renormalization group approach, J. Phys. A: Math. Theor., 53 (2020) · Zbl 1519.82042 · doi:10.1088/1751-8121/ab9338
[25] Desbrun, M.; Hirani, A. N.; Leok, M.; Marsden, J. E., Discrete exterior calculus (2005)
[26] Brunekreef, J.; Reitz, M., Approximate killing symmetries in non-perturbative quantum gravity, Class. Quantum Grav., 38 (2021) · Zbl 1481.83057 · doi:10.1088/1361-6382/abf412
[27] Bossavit, A., Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements (1998), New York: Academic, New York · Zbl 0945.78001
[28] Hirani, A2003Discrete exterior calculusPhD DissertationCaltech
[29] Ben-Chen, M.; Butscher, A.; Solomon, J.; Guibas, L., On discrete killing vector fields and patterns on surfaces, Comput. Graph. Forum, 29, 1701-11 (2010) · doi:10.1111/j.1467-8659.2010.01779.x
[30] Ambjørn, J.; Görlich, A.; Jurkiewicz, J.; Kreienbuehl, A.; Loll, R., Renormalization group flow in CDT, Class. Quantum Grav., 31 (2014) · Zbl 1297.81133 · doi:10.1088/0264-9381/31/16/165003
[31] Ambjorn, J.; Gizbert-Studnicki, J.; Görlich, A.; Jurkiewicz, J.; Loll, R., Renormalization in quantum theories of geometry, Front. Phys., 8 (2020) · doi:10.3389/fphy.2020.00247
[32] Ambjorn, J.; Coumbe, D. N.; Gizbert-Studnicki, J.; Jurkiewicz, J., Searching for a continuum limit in causal dynamical triangulation quantum gravity, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.104032
[33] Ambjrn, J.; Jurkiewicz, J.; Loll, R., Emergence of a 4d world from causal quantum gravity, Phys. Rev. Lett., 93 (2004) · doi:10.1103/PhysRevLett.93.131301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.