×

A hybrid nodal-staggered pseudo-spectral electromagnetic particle-in-cell method with finite-order centering. (English) Zbl 1522.81794

Summary: Electromagnetic particle-in-cell (PIC) codes are widely used to perform computer simulations of a variety of physical systems, including fusion plasmas, astrophysical plasmas, plasma wakefield particle accelerators, and secondary photon sources driven by ultra-intense lasers. In a PIC code, Maxwell’s equations are solved on a grid with a numerical method of choice. This article focuses on pseudo-spectral analytical time-domain (PSATD) algorithms and presents a novel hybrid PSATD PIC scheme that combines the respective advantages of standard nodal and staggered methods. The novelty of the hybrid scheme consists in using finite-order centering of grid quantities between nodal and staggered grids, in order to combine the solution of Maxwell’s equations on a staggered grid with the deposition of charges and currents and the gathering of electromagnetic forces on a nodal grid. The correctness and performance of the novel hybrid scheme are assessed by means of numerical tests that employ different classes of PSATD equations in a variety of physical scenarios, ranging from the modeling of electron-positron pair creation in vacuum to the simulation of laser-driven and particle beam-driven plasma wakefield acceleration. It is shown that the novel hybrid scheme offers significant numerical and computational advantages, compared to purely nodal or staggered methods, for all the test cases presented.

MSC:

81V80 Quantum optics
81V70 Many-body theory; quantum Hall effect
78A37 Ion traps
78A60 Lasers, masers, optical bistability, nonlinear optics
35Q61 Maxwell equations
65H05 Numerical computation of solutions to single equations
39A12 Discrete version of topics in analysis
81-10 Mathematical modeling or simulation for problems pertaining to quantum theory

References:

[1] Hockney, R.; Eastwood, J., Computer Simulation Using Particles (1988), Taylor & Francis, Inc. · Zbl 0662.76002
[2] Birdsall, C.; Langdon, A., Plasma Physics via Computer Simulation (1991), CRC Press
[3] Ethier, S.; Tang, W.; Lin, Z., J. Phys. Conf. Ser., 16, 1-15 (2005)
[4] Wang, W.; Lin, Z.; Tang, W.; Lee, W.; Ethier, S.; Lewandowski, J.; Rewoldt, G.; Hahm, T.; Manickam, J., Phys. Plasmas, 13, 9, Article 092505 pp. (2006)
[5] Ku, S.; Chang, C.; Diamond, P., Nucl. Fusion, 49, 11, Article 115021 pp. (2009)
[6] Bottino, A.; Scott, B.; Brunner, S.; McMillan, B.; Tran, T.; Vernay, T.; Villard, L.; Jolliet, S.; Hatzky, R.; Peeters, A., IEEE Trans. Plasma Sci., 38, 9, 2129-2135 (2010)
[7] Kraus, M.; Kormann, K.; Morrison, P.; Sonnendrücker, E., J. Plasma Phys., 83, 4, Article 905830401 pp. (2017)
[8] Kazimura, Y.; Sakai, J.; Neubert, T.; Bulanov, S., Astrophys. J., 498, 2, L183-L186 (1998)
[9] Silva, L.; Fonseca, R.; Tonge, J.; Dawson, J.; Mori, W.; Medvedev, M., Astrophys. J., 596, 1, L121-L124 (2003)
[10] Spitkovsky, A., Astrophys. J., 682, 1, L5-L8 (2008)
[11] Keshet, U.; Katz, B.; Spitkovsky, A.; Waxman, E., Astrophys. J., 693, 2, L127-L130 (2009)
[12] Martins, S.; Fonseca, R.; Silva, L.; Mori, W., Astrophys. J., 695, 2, L189-L193 (2009)
[13] Tajima, T.; Dawson, J., Phys. Rev. Lett., 43, 267-270 (1979)
[14] Gitomer, S.; Jones, R.; Begay, F.; Ehler, A.; Kephart, J.; Kristal, R., Phys. Fluids, 29, 8, 2679-2688 (1986)
[15] Gorbunov, L.; Kirsanov, V., Sov. Phys. JETP, 66, 2, 290-294 (1987)
[16] Malka, V.; Mora, P., C. R. Phys., 10, 2, 106-115 (2009)
[17] Vincenti, H.; Monchocé, S.; Kahaly, S.; Bonnaud, G.; Martin, P.; Quéré, F., Nat. Commun., 5, 1, 1-9 (2014)
[18] Leblanc, A.; Monchocé, S.; Vincenti, H.; Kahaly, S.; Vay, J.-L.; Quéré, F., Phys. Rev. Lett., 119, 15, Article 155001 pp. (2017)
[19] Vincenti, H., Phys. Rev. Lett., 123, 10, Article 105001 pp. (2019)
[20] Fedeli, L.; Sainte-Marie, A.; Zaïm, N.; Thévenet, M.; Vay, J.-L.; Myers, A.; Quéré, F.; Vincenti, H., Probing strong-field QED with Doppler-boosted PetaWatt-class lasers, arXiv preprint
[21] Yee, K., IEEE Trans. Antennas Propag., 14, 3, 302-307 (1966) · Zbl 1155.78304
[22] Cole, J., IEEE Trans. Microw. Theory Tech., 45, 6, 991-996 (1997)
[23] Cole, J., IEEE Trans. Antennas Propag., 50, 9, 1185-1191 (2002) · Zbl 1368.65134
[24] Taflove, A.; Hagness, S., Computational Electrodynamics: the Finite-Difference Time-Domain Method (2005), Artech House
[25] Haber, I.; Lee, R.; Klein, H.; Boris, J., (Proc. Sixth Conf. Num. Sim. Plasmas. Proc. Sixth Conf. Num. Sim. Plasmas, Berkeley, CA (1973)), 46-48
[26] Buneman, O.; Barnes, C. W.; Green, J. C.; Nielsen, D. E., J. Comput. Phys., 38, 1, 1-44 (1980) · Zbl 0439.76098
[27] Dawson, J., Rev. Mod. Phys., 55, 403-447 (1983)
[28] Liu, Q., Microw. Opt. Technol. Lett., 15, 3, 158-165 (1997)
[29] Vay, J.-L.; Haber, I.; Godfrey, B., J. Comput. Phys., 243, 260-268 (2013) · Zbl 1349.82126
[30] Lehe, R.; Vay, J.-L., (13th Int. Computational Accelerator Physics Conf. (ICAP’18). 13th Int. Computational Accelerator Physics Conf. (ICAP’18), Key West, FL, USA, 20-24 October 2018 (2019), JACOW Publishing: JACOW Publishing Geneva, Switzerland), 345-349
[31] Vincenti, H.; Vay, J.-L., Comput. Phys. Commun., 200, 147-167 (2016) · Zbl 1351.78057
[32] Jalas, S.; Dornmair, I.; Lehe, R.; Vincenti, H.; Vay, J.-L.; Kirchen, M.; Maier, A., Phys. Plasmas, 24, 3, Article 033115 pp. (2017)
[33] Fornberg, B., SIAM J. Numer. Anal., 27, 4, 904-918 (1990) · Zbl 0705.65076
[34] Kirchen, M.; Lehe, R.; Godfrey, B.; Dornmair, I.; Jalas, S.; Peters, K.; Vay, J.-L.; Maier, A., Phys. Plasmas, 23, 10, Article 100704 pp. (2016)
[35] Lehe, R.; Kirchen, M.; Godfrey, B.; Maier, A.; Vay, J.-L., Phys. Rev. E, 94, Article 053305 pp. (2016)
[36] Kirchen, M.; Lehe, R.; Jalas, S.; Shapoval, O.; Vay, J.-L.; Maier, A., Phys. Rev. E, 102, Article 013202 pp. (2020)
[37] Shapoval, O.; Lehe, R.; Thévenet, M.; Zoni, E.; Zhao, Y.; Vay, J.-L., Phys. Rev. E, 104, Article 055311 pp. (2021)
[38] Zoni, E., A hybrid nodal-staggered pseudo-spectral electromagnetic particle-in-cell method with finite-order centering (Apr. 2022) · Zbl 1522.81794
[39] Vay, J.-L., Phys. Plasmas, 15, 5, Article 056701 pp. (2008)
[40] Lehe, R.; Thaury, C.; Guillaume, E.; Lifschitz, A.; Malka, V., Phys. Rev. Spec. Top., Accel. Beams, 17, 12, Article 121301 pp. (2014)
[41] Godfrey, B. B., J. Comput. Phys., 15, 4, 504-521 (1974)
[42] Godfrey, B. B., J. Comput. Phys., 19, 1, 58-76 (1975)
[43] Martins, S. F.; Fonseca, R. A.; Silva, L. O.; Lu, W.; Mori, W. B., Comput. Phys. Commun., 181, 5, 869-875 (2010) · Zbl 1205.82030
[44] Vay, J.; Geddes, C.; Benedetti, C.; Bruhwiler, D.; Cormier-Michel, E.; Cowan, B.; Cary, J.; Grote, D., AIP Conf. Proc., 1299, 1, 244-249 (2010)
[45] Vay, J.-L.; Geddes, C.; Cormier-Michel, E.; Grote, D., J. Comput. Phys., 230, 15, 5908-5929 (2011)
[46] Xu, X.; Yu, P.; Martins, S.; Tsung, F.; Decyk, V.; Vieira, J.; Fonseca, R.; Lu, W.; Silva, L.; Mori, W., Comput. Phys. Commun., 184, 11, 2503-2514 (2013) · Zbl 1349.76929
[47] Godfrey, B.; Vay, J.-L.; Haber, I., J. Comput. Phys., 258, 689-704 (2014) · Zbl 1349.82083
[48] Ohmura, Y.; Okamura, Y., PIERS Online, 6, 7, 632-635 (2010)
[49] Vay, J.-L.; Almgren, A.; Bell, J.; Ge, L.; Grote, D.; Hogan, M.; Kononenko, O.; Lehe, R.; Myers, A.; Ng, C.; Park, J.; Ryne, R.; Shapoval, O.; Thévenet, M.; Zhang, W., Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip., 909, 476-479 (2018), 3rd European Advanced Accelerator Concepts workshop (EAAC2017)
[50] Vay, J.-L.; Almgren, A.; Amorim, L.; Bell, J.; Ge, L.; Gott, K.; Grote, D.; Hogan, M.; Huebl, A.; Jambunathan, R.; Lehe, R.; Myers, A.; Ng, C.; Park, J.; Rowan, M.; Shapoval, O.; Thévenet, M.; Zhang, W.; Zhao, Y.; Zoni, E., J. Phys. Conf. Ser., 1596, Article 012059 pp. (2020)
[51] Vay, J. L.; Huebl, A.; Almgren, A.; Amorim, L. D.; Bell, J.; Fedeli, L.; Ge, L.; Gott, K.; Grote, D. P.; Hogan, M.; Jambunathan, R.; Lehe, R.; Myers, A.; Ng, C.; Rowan, M.; Shapoval, O.; Thévenet, M.; Vincenti, H.; Yang, E.; Zaïm, N.; Zhang, W.; Zhao, Y.; Zoni, E., Phys. Plasmas, 28, 2, Article 23105 pp. (2021)
[52] Sauter, F., Z. Phys., 69, 11, 742-764 (1931) · JFM 57.1218.06
[53] Heisenberg, W.; Euler, H., Z. Phys., 98, 11, 714-732 (1936) · JFM 62.1002.03
[54] Schwinger, J., Phys. Rev., 82, 664-679 (1951) · Zbl 0043.42201
[55] Bulanov, S.; Mur, V.; Narozhny, N.; Nees, J.; Popov, V., Phys. Rev. Lett., 104, Article 220404 pp. (2010)
[56] Yoon, J.; Kim, Y.; Choi, I.; Sung, J.; Lee, H.; Lee, S.; Nam, C., Optica, 8, 5, 630-635 (2021)
[57] Quéré, F.; Vincenti, H., High Power Laser Sci. Eng., 9, Article e6 pp. (2021)
[58] Sainte-Marie, A.; Fedeli, L.; Zaïm, N.; Karbstein, F.; Vincenti, H., Quantum vacuum processes in the extremely intense light of relativistic plasma mirror sources
[59] Blaclard, G.; Vincenti, H.; Lehe, R.; Vay, J., Phys. Rev. E, 96, 3 (2017)
[60] Fedeli, L.; Zaïm, N.; Sainte-Marie, A.; Thévenet, M.; Huebl, A.; Myers, A.; Vay, J.-L.; Vincenti, H., New J. Phys., 24, 2, Article 025009 pp. (2022)
[61] Narozhny, N.; Bulanov, S.; Mur, V.; Popov, V., Phys. Lett. A, 330, 1, 1-6 (2004)
[62] Vay, J.-L., Phys. Rev. Lett., 98, Article 130405 pp. (2007)
[63] Vay, J.-L.; Geddes, C.; Esarey, E.; Schroeder, C.; Leemans, W.; Cormier-Michel, E.; Grote, D., Modeling of 10 Gev-1 Tev laser-plasma accelerators using Lorentz boosted simulations, Phys. Plasmas, 18, 12, Article 123103 pp. (2011)
[64] Esarey, E.; Schroeder, C.; Leemans, W., Rev. Mod. Phys., 81, 3, 1229-1285 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.