×

Free fermions, KdV charges, generalised Gibbs ensembles and modular transforms. (English) Zbl 1522.81486

Summary: In this paper we consider the modular properties of generalised Gibbs ensembles in the Ising model, realised as a theory of one free massless fermion. The Gibbs ensembles are given by adding chemical potentials to chiral charges corresponding to the KdV conserved quantities. (They can also be thought of as simple models for extended characters for the W-algebras). The eigenvalues and Gibbs ensembles for the charges can be easily calculated exactly using their expression as bilinears in the fermion fields. We re-derive the constant term in the charges, previously found by zeta-function regularisation, from modular properties. We expand the Gibbs ensembles as a power series in the chemical potentials and find the modular properties of the corresponding expectation values of polynomials of KdV charges. This leads us to an asymptotic expansion of the Gibbs ensemble calculated in the opposite channel. We obtain the same asymptotic expansion using Dijkgraaf’s results for chiral partition functions. By considering the corresponding TBA calculation, we are led to a conjecture for the exact closed-form expression of the GGE in the opposite channel. This has the form of a trace over multiple copies of the fermion Fock space. We give analytic and numerical evidence supporting our conjecture.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81R12 Groups and algebras in quantum theory and relations with integrable systems
35Q53 KdV equations (Korteweg-de Vries equations)
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
17B68 Virasoro and related algebras
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
82B23 Exactly solvable models; Bethe ansatz

References:

[1] Feigin, B.; Frenkel, E., Integrals of motion and quantum groups, Lect. Notes Math., 1620, 349 (1996) · Zbl 0885.58034 · doi:10.1007/BFb0094794
[2] Bazhanov, VV; Lukyanov, SL; Zamolodchikov, AB, Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe ansatz, Commun. Math. Phys., 177, 381 (1996) · Zbl 0851.35113 · doi:10.1007/BF02101898
[3] Fring, A.; Mussardo, G.; Simonetti, P., Form-factors of the elementary field in the Bullough-Dodd model, Phys. Lett. B, 307, 83 (1993) · doi:10.1016/0370-2693(93)90196-O
[4] Essler, FHL; Mussardo, G.; Panfil, M., Generalized Gibbs ensembles for quantum field theories, Phys. Rev. A, 91 (2015) · doi:10.1103/PhysRevA.91.051602
[5] Essler, FHL; Mussardo, G.; Panfil, M., On truncated generalized Gibbs ensembles in the Ising field theory, J. Stat. Mech., 1701 (2017) · Zbl 1457.82064 · doi:10.1088/1742-5468/aa53f4
[6] Ilievski, E.; Medenjak, M.; Prosen, T.; Zadnik, L., Quasilocal charges in integrable lattice systems, J. Stat. Mech., 1606 (2016) · Zbl 1456.81238 · doi:10.1088/1742-5468/2016/06/064008
[7] Dymarsky, A.; Pavlenko, K., Generalized Gibbs Ensemble of 2d CFTs at large central charge in the thermodynamic limit, JHEP, 01, 098 (2019) · Zbl 1409.81117
[8] Dymarsky, A.; Pavlenko, K., Exact generalized partition function of 2D CFTs at large central charge, JHEP, 05, 077 (2019) · Zbl 1416.81147 · doi:10.1007/JHEP05(2019)077
[9] Kraus, P.; Perlmutter, E., Partition functions of higher spin black holes and their CFT duals, JHEP, 11, 061 (2011) · Zbl 1306.81255 · doi:10.1007/JHEP11(2011)061
[10] Gaberdiel, MR; Hartman, T.; Jin, K., Higher spin black holes from CFT, JHEP, 04, 103 (2012) · Zbl 1348.83079 · doi:10.1007/JHEP04(2012)103
[11] Iles, NJ; Watts, GMT, Modular properties of characters of the W_3algebra, JHEP, 01, 089 (2016) · Zbl 1388.81220 · doi:10.1007/JHEP01(2016)089
[12] Maloney, A.; Ng, GS; Ross, SF; Tsiares, I., Thermal correlation functions of KdV charges in 2D CFT, JHEP, 02, 044 (2019) · Zbl 1411.81185 · doi:10.1007/JHEP02(2019)044
[13] Gaberdiel, M., A general transformation formula for conformal fields, Phys. Lett. E, 325, 366 (1994) · doi:10.1016/0370-2693(94)90026-4
[14] D. Zagier, Elliptic modular forms and their applications, in The 1-2-3 of modular forms, K. Ranestad eds., Springer, Berlin, Heidelberg, Germany (2008), p. 1. · Zbl 1259.11042
[15] E. T. Bell, Exponential polynomials, Ann. Math.35 (1934) 258. · Zbl 0009.21202
[16] Dijkgraaf, R., Chiral deformations of conformal field theories, Nucl. Phys. E, 493, 588 (1997) · Zbl 0934.81052 · doi:10.1016/S0550-3213(97)00153-3
[17] P. DiFrancesco, P. Mathieu and D. Séméchal, Conformal field theory, Springer, New York, NY, U.S.A. (1997) [INSPIRE]. · Zbl 0869.53052
[18] Zamolodchikov, AB, Thermodynamic Eethe ansatz in relativistic models. Scaling three state Potts and Lee- Yang models, Nucl. Phys. E, 342, 695 (1990) · doi:10.1016/0550-3213(90)90333-9
[19] Klassen, TR; Melzer, E., The thermodynamics of purely elastic scattering theories and conformal perturbation theory, Nucl. Phys. E, 350, 635 (1991) · doi:10.1016/0550-3213(91)90159-U
[20] P. Fendley and H. Saleur, Massless integrable quantum field theories and massless scattering in (1 + 1)-dimensions, in Summer school in high-energy physics and cosmology (includes workshop on strings, gravity, and related topics 29-30 July 1993), (1993), p. 301 [hep-th/9310058] [INSPIRE]. · Zbl 0844.58107
[21] M. L. Glasser, The quadratic formula made hard or a less radical approach to solving equations,math.CA/9411224.
[22] Dorey, P.; Tateo, R., Excited state s by analytic continuation of TEA equations, Nucl. Phys. E, 482, 639 (1996) · Zbl 0925.82044 · doi:10.1016/S0550-3213(96)00516-0
[23] Fendley, P., Excited state thermodynamics, Nucl. Phys. E, 374, 667 (1992) · Zbl 0992.81516 · doi:10.1016/0550-3213(92)90404-Y
[24] Awata, H.; Fukuma, M.; Odake, S.; Quano, Y-H, Eigensystem and full character formula of the W_l+∞algebra with c = 1, Lett. Math. Phys., 31, 289 (1994) · Zbl 0806.17026 · doi:10.1007/BF00762791
[25] Essler, FHL; Mussardo, G.; Panfil, M., Generalized Gibbs ensembles for quantum field theories, Phys. Rev. A, 91 (2015) · doi:10.1103/PhysRevA.91.051602
[26] Dorey, P.; Pocklington, A.; Tateo, R.; Watts, G., TEA and TCSA with boundaries and excited states, Nucl. Phys. E, 525, 641 (1998) · Zbl 1047.82516 · doi:10.1016/S0550-3213(98)00339-3
[27] Bilstein, U.; Wehefritz, B., Spectra of non-Hermitian quantum spin chains describing boundary induced phase transitions, J. Phys. A, 30, 4925 (1997) · Zbl 0934.82012 · doi:10.1088/0305-4470/30/14/008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.