×

Two-loop tensor integral coefficients in OpenLoops. (English) Zbl 1522.81172

Summary: We present a new and fully general algorithm for the automated construction of the integrands of two-loop scattering amplitudes. This is achieved through a generalisation of the open-loops method to two loops. The core of the algorithm consists of a numerical recursion, where the various building blocks of two-loop diagrams are connected to each other through process-independent operations that depend only on the Feynman rules of the model at hand. This recursion is implemented in terms of tensor coefficients that encode the polynomial dependence of loop numerators on the two independent loop momenta. The resulting coefficients are ready to be combined with corresponding tensor integrals to form scattering probability densities at two loops. To optimise CPU efficiency we have compared several algorithmic options identifying one that outperforms naive solutions by two orders of magnitude. This new algorithm is implemented in the OpenLoops framework in a fully automated way for two-loop QED and QCD corrections to any Standard Model process. The technical performance is discussed in detail for several \(2\rightarrow2\) and \(2\rightarrow3\) processes with up to order \(10^5\) two-loop diagrams. We find that the CPU cost scales linearly with the number of two-loop diagrams and is comparable to the cost of corresponding real-virtual ingredients in a NNLO calculation. This new algorithm constitutes a key building block for the construction of an automated generator of scattering amplitudes at two loops.

MSC:

81S40 Path integrals in quantum mechanics
81T18 Feynman diagrams
81V10 Electromagnetic interaction; quantum electrodynamics
81-08 Computational methods for problems pertaining to quantum theory

References:

[1] T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP02 (2009) 007 [arXiv:0811.4622] [INSPIRE].
[2] Alioli, S.; Nason, P.; Oleari, C.; Re, E., A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP, 06, 043 (2010) · Zbl 1290.81155 · doi:10.1007/JHEP06(2010)043
[3] Bevilacqua, G., HELAC-NLO, Comput. Phys. Commun., 184, 986 (2013) · doi:10.1016/j.cpc.2012.10.033
[4] Alwall, J., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP, 07, 079 (2014) · Zbl 1402.81011 · doi:10.1007/JHEP07(2014)079
[5] Ossola, G.; Papadopoulos, CG; Pittau, R., CutTools: A Program implementing the OPP reduction method to compute one-loop amplitudes, JHEP, 03, 042 (2008) · doi:10.1088/1126-6708/2008/03/042
[6] C.F. Berger et al., An Automated Implementation of On-Shell Methods for One-Loop Amplitudes, Phys. Rev. D78 (2008) 036003 [arXiv:0803.4180] [INSPIRE].
[7] van Hameren, A.; Papadopoulos, CG; Pittau, R., Automated one-loop calculations: A Proof of concept, JHEP, 09, 106 (2009) · doi:10.1088/1126-6708/2009/09/106
[8] van Hameren, A., OneLOop: For the evaluation of one-loop scalar functions, Comput. Phys. Commun., 182, 2427 (2011) · Zbl 1262.81253 · doi:10.1016/j.cpc.2011.06.011
[9] Hirschi, V.; Frederix, R.; Frixione, S.; Garzelli, MV; Maltoni, F.; Pittau, R., Automation of one-loop QCD corrections, JHEP, 05, 044 (2011) · Zbl 1296.81138 · doi:10.1007/JHEP05(2011)044
[10] F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering Amplitudes with Open Loops, Phys. Rev. Lett.108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].
[11] Badger, S.; Biedermann, B.; Uwer, P.; Yundin, V., Numerical evaluation of virtual corrections to multi-jet production in massless QCD, Comput. Phys. Commun., 184, 1981 (2013) · doi:10.1016/j.cpc.2013.03.018
[12] G. Cullen et al., GOSAM-2.0: a tool for automated one-loop calculations within the Standard Model and beyond, Eur. Phys. J. C74 (2014) 3001 [arXiv:1404.7096] [INSPIRE].
[13] Peraro, T., Ninja: Automated Integrand Reduction via Laurent Expansion for One-Loop Amplitudes, Comput. Phys. Commun., 185, 2771 (2014) · Zbl 1360.81021 · doi:10.1016/j.cpc.2014.06.017
[14] Denner, A.; Dittmaier, S.; Hofer, L., Collier: a fortran-based Complex One-Loop LIbrary in Extended Regularizations, Comput. Phys. Commun., 212, 220 (2017) · Zbl 1376.81070 · doi:10.1016/j.cpc.2016.10.013
[15] Actis, S.; Denner, A.; Hofer, L.; Lang, J-N; Scharf, A.; Uccirati, S., RECOLA: REcursive Computation of One-Loop Amplitudes, Comput. Phys. Commun., 214, 140 (2017) · Zbl 1376.81069 · doi:10.1016/j.cpc.2017.01.004
[16] Carrazza, S.; Ellis, RK; Zanderighi, G., QCDLoop: a comprehensive framework for one-loop scalar integrals, Comput. Phys. Commun., 209, 134 (2016) · Zbl 1375.81229 · doi:10.1016/j.cpc.2016.07.033
[17] Buccioni, F., OpenLoops 2, Eur. Phys. J. C, 79, 866 (2019) · doi:10.1140/epjc/s10052-019-7306-2
[18] R. Boughezal, F. Caola, K. Melnikov, F. Petriello and M. Schulze, Higgs boson production in association with a jet at next-to-next-to-leading order, Phys. Rev. Lett.115 (2015) 082003 [arXiv:1504.07922] [INSPIRE].
[19] Heinrich, G.; Jahn, S.; Jones, SP; Kerner, M.; Pires, J., NNLO predictions for Z-boson pair production at the LHC, JHEP, 03, 142 (2018) · doi:10.1007/JHEP03(2018)142
[20] A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, A. Huss and J. Pires, Triple Differential Dijet Cross Section at the LHC, Phys. Rev. Lett.123 (2019) 102001 [arXiv:1905.09047] [INSPIRE].
[21] de Florian, D.; Fabre, I.; Mazzitelli, J., Triple Higgs production at hadron colliders at NNLO in QCD, JHEP, 03, 155 (2020) · doi:10.1007/JHEP03(2020)155
[22] Grazzini, M.; Kallweit, S.; Lindert, JM; Pozzorini, S.; Wiesemann, M., NNLO QCD + NLO EW with Matrix+OpenLoops: precise predictions for vector-boson pair production, JHEP, 02, 087 (2020) · doi:10.1007/JHEP02(2020)087
[23] Czakon, M.; Mitov, A.; Pellen, M.; Poncelet, R., NNLO QCD predictions for W+c-jet production at the LHC, JHEP, 06, 100 (2021) · doi:10.1007/JHEP06(2021)100
[24] P. Banerjee, T. Engel, N. Schalch, A. Signer and Y. Ulrich, Bhabha scattering at NNLO with next-to-soft stabilisation, Phys. Lett. B820 (2021) 136547 [arXiv:2106.07469] [INSPIRE].
[25] Banerjee, P.; Engel, T.; Schalch, N.; Signer, A.; Ulrich, Y., Møller scattering at NNLO, Phys. Rev. D, 105, L031904 (2022) · doi:10.1103/PhysRevD.105.L031904
[26] Campbell, JM; De Laurentis, G.; Ellis, RK; Seth, S., The pp → W (→ ℓν) + γ process at next-to-next-to-leading order, JHEP, 07, 079 (2021) · doi:10.1007/JHEP07(2021)079
[27] F. Buccioni et al., Mixed QCD-electroweak corrections to dilepton production at the LHC in the high invariant mass region, arXiv:2203.11237 [INSPIRE].
[28] Heinrich, G., Collider Physics at the Precision Frontier, Phys. Rept., 922, 1 (2021) · Zbl 1509.81614 · doi:10.1016/j.physrep.2021.03.006
[29] Badger, S.; Brønnum-Hansen, C.; Hartanto, HB; Peraro, T., Analytic helicity amplitudes for two-loop five-gluon scattering: the single-minus case, JHEP, 01, 186 (2019) · Zbl 1409.81155 · doi:10.1007/JHEP01(2019)186
[30] S. Abreu, J. Dormans, F. Febres Cordero, H. Ita and B. Page, Analytic Form of Planar Two-Loop Five-Gluon Scattering Amplitudes in QCD, Phys. Rev. Lett.122 (2019) 082002 [arXiv:1812.04586] [INSPIRE].
[31] S. Abreu, J. Dormans, F. Febres Cordero, H. Ita, B. Page and V. Sotnikov, Analytic Form of the Planar Two-Loop Five-Parton Scattering Amplitudes in QCD, JHEP05 (2019) 084 [arXiv:1904.00945] [INSPIRE]. · Zbl 1416.81202
[32] S. Badger et al., Analytic form of the full two-loop five-gluon all-plus helicity amplitude, Phys. Rev. Lett.123 (2019) 071601 [arXiv:1905.03733] [INSPIRE].
[33] Hartanto, HB; Badger, S.; Brønnum-Hansen, C.; Peraro, T., A numerical evaluation of planar two-loop helicity amplitudes for a W-boson plus four partons, JHEP, 09, 119 (2019) · Zbl 1409.81155 · doi:10.1007/JHEP09(2019)119
[34] Chawdhry, HA; Czakon, M.; Mitov, A.; Poncelet, R., Two-loop leading-color helicity amplitudes for three-photon production at the LHC, JHEP, 06, 150 (2021) · doi:10.1007/JHEP06(2021)150
[35] Chawdhry, HA; Czakon, M.; Mitov, A.; Poncelet, R., Two-loop leading-colour QCD helicity amplitudes for two-photon plus jet production at the LHC, JHEP, 07, 164 (2021) · doi:10.1007/JHEP07(2021)164
[36] B. Agarwal, F. Buccioni, A. von Manteuffel and L. Tancredi, Two-loop leading colour QCD corrections to \(q\overline{q} \)→ γγg and qg → γγq, JHEP04 (2021) 201 [arXiv:2102.01820] [INSPIRE].
[37] B. Agarwal, F. Buccioni, A. von Manteuffel and L. Tancredi, Two-Loop Helicity Amplitudes for Diphoton Plus Jet Production in Full Color, Phys. Rev. Lett.127 (2021) 262001 [arXiv:2105.04585] [INSPIRE].
[38] S. Abreu, F. Febres Cordero, H. Ita, B. Page and V. Sotnikov, Leading-color two-loop QCD corrections for three-jet production at hadron colliders, JHEP07 (2021) 095 [arXiv:2102.13609] [INSPIRE].
[39] S. Abreu, F. Febres Cordero, H. Ita, M. Klinkert, B. Page and V. Sotnikov, Leading-color two-loop amplitudes for four partons and a W boson in QCD, JHEP04 (2022) 042 [arXiv:2110.07541] [INSPIRE].
[40] S. Badger, H.B. Hartanto and S. Zoia, Two-Loop QCD Corrections to Wbb^-Production at Hadron Colliders, Phys. Rev. Lett.127 (2021) 012001 [arXiv:2102.02516] [INSPIRE].
[41] Badger, S.; Chaubey, E.; Hartanto, HB; Marzucca, R., Two-loop leading colour QCD helicity amplitudes for top quark pair production in the gluon fusion channel, JHEP, 06, 163 (2021) · doi:10.1007/JHEP06(2021)163
[42] Badger, S., Virtual QCD corrections to gluon-initiated diphoton plus jet production at hadron colliders, JHEP, 11, 083 (2021) · doi:10.1007/JHEP11(2021)083
[43] Badger, S.; Hartanto, HB; Kryś, J.; Zoia, S., Two-loop leading-colour QCD helicity amplitudes for Higgs boson production in association with a bottom-quark pair at the LHC, JHEP, 11, 012 (2021) · doi:10.1007/JHEP11(2021)012
[44] Badger, S.; Hartanto, HB; Kryś, J.; Zoia, S., Two-loop leading colour helicity amplitudes for W^±γ + j production at the LHC, JHEP, 05, 035 (2022) · doi:10.1007/JHEP05(2022)035
[45] S. Kallweit, V. Sotnikov and M. Wiesemann, Triphoton production at hadron colliders in NNLO QCD, Phys. Lett. B812 (2021) 136013 [arXiv:2010.04681] [INSPIRE].
[46] Chawdhry, HA; Czakon, ML; Mitov, A.; Poncelet, R., NNLO QCD corrections to three-photon production at the LHC, JHEP, 02, 057 (2020) · doi:10.1007/JHEP02(2020)057
[47] Chawdhry, HA; Czakon, M.; Mitov, A.; Poncelet, R., NNLO QCD corrections to diphoton production with an additional jet at the LHC, JHEP, 09, 093 (2021) · doi:10.1007/JHEP09(2021)093
[48] M. Czakon, A. Mitov and R. Poncelet, Next-to-Next-to-Leading Order Study of Three-Jet Production at the LHC, Phys. Rev. Lett.127 (2021) 152001 [arXiv:2106.05331] [INSPIRE].
[49] Caola, F.; Lindert, JM; Melnikov, K.; Monni, PF; Tancredi, L.; Wever, C., Bottom-quark effects in Higgs production at intermediate transverse momentum, JHEP, 09, 035 (2018) · doi:10.1007/JHEP09(2018)035
[50] Davies, J., Double Higgs boson production at NLO: combining the exact numerical result and high-energy expansion, JHEP, 11, 024 (2019) · doi:10.1007/JHEP11(2019)024
[51] M. Grazzini, S. Kallweit, M. Wiesemann and J.Y. Yook, W^+W^−production at the LHC: NLO QCD corrections to the loop-induced gluon fusion channel, Phys. Lett. B804 (2020) 135399 [arXiv:2002.01877] [INSPIRE].
[52] Bonetti, M.; Panzer, E.; Smirnov, VA; Tancredi, L., Two-loop mixed QCD-EW corrections to gg → Hg, JHEP, 11, 045 (2020) · doi:10.1007/JHEP11(2020)045
[53] Becchetti, M.; Moriello, F.; Schweitzer, A., Two-loop amplitude for mixed QCD-EW corrections to gg → Hg, JHEP, 04, 139 (2022) · doi:10.1007/JHEP04(2022)139
[54] S. Badger, T. Gehrmann, M. Marcoli and R. Moodie, Next-to-leading order QCD corrections to diphoton-plus-jet production through gluon fusion at the LHC, Phys. Lett. B824 (2022) 136802 [arXiv:2109.12003] [INSPIRE].
[55] C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Higgs Boson Gluon-Fusion Production in QCD at Three Loops, Phys. Rev. Lett.114 (2015) 212001 [arXiv:1503.06056] [INSPIRE].
[56] Anastasiou, C., High precision determination of the gluon fusion Higgs boson cross-section at the LHC, JHEP, 05, 058 (2016) · doi:10.1007/JHEP05(2016)058
[57] Cieri, L.; Chen, X.; Gehrmann, T.; Glover, EWN; Huss, A., Higgs boson production at the LHC using the q_Tsubtraction formalism at N^3LO QCD, JHEP, 02, 096 (2019) · doi:10.1007/JHEP02(2019)096
[58] C. Duhr, F. Dulat and B. Mistlberger, Higgs Boson Production in Bottom-Quark Fusion to Third Order in the Strong Coupling, Phys. Rev. Lett.125 (2020) 051804 [arXiv:1904.09990] [INSPIRE].
[59] X. Chen, T. Gehrmann, E.W.N. Glover, A. Huss, B. Mistlberger and A. Pelloni, Fully Differential Higgs Boson Production to Third Order in QCD, Phys. Rev. Lett.127 (2021) 072002 [arXiv:2102.07607] [INSPIRE].
[60] Duhr, C.; Dulat, F.; Mistlberger, B., Charged current Drell-Yan production at N^3LO, JHEP, 11, 143 (2020) · doi:10.1007/JHEP11(2020)143
[61] Duhr, C.; Mistlberger, B., Lepton-pair production at hadron colliders at N^3LO in QCD, JHEP, 03, 116 (2022) · doi:10.1007/JHEP03(2022)116
[62] Camarda, S.; Cieri, L.; Ferrera, G., Drell-Yan lepton-pair production: qT resummation at N3LL accuracy and fiducial cross sections at N3LO, Phys. Rev. D, 104, L111503 (2021) · doi:10.1103/PhysRevD.104.L111503
[63] Grazzini, M.; Kallweit, S.; Wiesemann, M., Fully differential NNLO computations with MATRIX, Eur. Phys. J. C, 78, 537 (2018) · doi:10.1140/epjc/s10052-018-5771-7
[64] R. Gauld, N. Glover, A. Huss, I. Majer and A. Gehrmann-De Ridder, LHC observables with NNLOJET, PoSRADCOR2019 (2019) 002 [INSPIRE].
[65] Banerjee, P.; Engel, T.; Signer, A.; Ulrich, Y., QED at NNLO with McMule, SciPost Phys., 9, 027 (2020) · doi:10.21468/SciPostPhys.9.2.027
[66] G. ’t Hooft and M.J.G. Veltman, Regularization and Renormalization of Gauge Fields, Nucl. Phys. B44 (1972) 189 [INSPIRE].
[67] van Hameren, A., Multi-gluon one-loop amplitudes using tensor integrals, JHEP, 07, 088 (2009) · doi:10.1088/1126-6708/2009/07/088
[68] Buccioni, F.; Pozzorini, S.; Zoller, M., On-the-fly reduction of open loops, Eur. Phys. J. C, 78, 70 (2018) · doi:10.1140/epjc/s10052-018-5562-1
[69] Ossola, G.; Papadopoulos, CG; Pittau, R., On the Rational Terms of the one-loop amplitudes, JHEP, 05, 004 (2008) · doi:10.1088/1126-6708/2008/05/004
[70] Draggiotis, P.; Garzelli, MV; Papadopoulos, CG; Pittau, R., Feynman Rules for the Rational Part of the QCD 1-loop amplitudes, JHEP, 04, 072 (2009) · doi:10.1088/1126-6708/2009/04/072
[71] M.V. Garzelli, I. Malamos and R. Pittau, Feynman rules for the rational part of the Electroweak 1-loop amplitudes, JHEP01 (2010) 040 [Erratum ibid.10 (2010) 097] [arXiv:0910.3130] [INSPIRE]. · Zbl 1291.81449
[72] Pittau, R., Primary Feynman rules to calculate the epsilon-dimensional integrand of any 1-loop amplitude, JHEP, 02, 029 (2012) · Zbl 1309.81283 · doi:10.1007/JHEP02(2012)029
[73] K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate β-functions in 4 Loops, Nucl. Phys. B192 (1981) 159 [INSPIRE].
[74] A. von Manteuffel and C. Studerus, Reduze 2 — Distributed Feynman Integral Reduction, arXiv:1201.4330 [INSPIRE].
[75] von Manteuffel, A.; Schabinger, RM, A novel approach to integration by parts reduction, Phys. Lett. B, 744, 101 (2015) · Zbl 1330.81151 · doi:10.1016/j.physletb.2015.03.029
[76] H.A. Chawdhry, M.A. Lim and A. Mitov, Two-loop five-point massless QCD amplitudes within the integration-by-parts approach, Phys. Rev. D99 (2019) 076011 [arXiv:1805.09182] [INSPIRE].
[77] A.V. Smirnov and F.S. Chuharev, FIRE6: Feynman Integral REduction with Modular Arithmetic, Comput. Phys. Commun.247 (2020) 106877 [arXiv:1901.07808] [INSPIRE]. · Zbl 1510.81007
[78] J. Klappert, F. Lange, P. Maierhöfer and J. Usovitsch, Integral reduction with Kira 2.0 and finite field methods, Comput. Phys. Commun.266 (2021) 108024 [arXiv:2008.06494] [INSPIRE]. · Zbl 1523.81078
[79] T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B580 (2000) 485 [hep-ph/9912329] [INSPIRE]. · Zbl 1071.81089
[80] J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett.110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].
[81] Papadopoulos, CG; Tommasini, D.; Wever, C., The Pentabox Master Integrals with the Simplified Differential Equations approach, JHEP, 04, 078 (2016)
[82] T. Gehrmann, J.M. Henn and N.A. Lo Presti, Pentagon functions for massless planar scattering amplitudes, JHEP10 (2018) 103 [arXiv:1807.09812] [INSPIRE]. · Zbl 1402.81256
[83] D. Chicherin, T. Gehrmann, J.M. Henn, N.A. Lo Presti, V. Mitev and P. Wasser, Analytic result for the nonplanar hexa-box integrals, JHEP03 (2019) 042 [arXiv:1809.06240] [INSPIRE]. · Zbl 1414.81255
[84] Chicherin, D.; Sotnikov, V., Pentagon Functions for Scattering of Five Massless Particles, JHEP, 20, 167 (2020) · Zbl 1457.81126 · doi:10.1007/JHEP12(2020)167
[85] Abreu, S.; Ita, H.; Moriello, F.; Page, B.; Tschernow, W.; Zeng, M., Two-Loop Integrals for Planar Five-Point One-Mass Processes, JHEP, 11, 117 (2020) · doi:10.1007/JHEP11(2020)117
[86] Abreu, S.; Ita, H.; Page, B.; Tschernow, W., Two-loop hexa-box integrals for non-planar five-point one-mass processes, JHEP, 03, 182 (2022) · Zbl 1522.81263 · doi:10.1007/JHEP03(2022)182
[87] Duhr, C.; Smirnov, VA; Tancredi, L., Analytic results for two-loop planar master integrals for Bhabha scattering, JHEP, 09, 120 (2021) · doi:10.1007/JHEP09(2021)120
[88] Pozzorini, S.; Zhang, H.; Zoller, MF, Rational Terms of UV Origin at Two Loops, JHEP, 05, 077 (2020) · doi:10.1007/JHEP05(2020)077
[89] Lang, J-N; Pozzorini, S.; Zhang, H.; Zoller, MF, Two-Loop Rational Terms in Yang-Mills Theories, JHEP, 10, 016 (2020) · doi:10.1007/JHEP10(2020)016
[90] Lang, J-N; Pozzorini, S.; Zhang, H.; Zoller, MF, Two-loop rational terms for spontaneously broken theories, JHEP, 01, 105 (2022) · Zbl 1521.81179 · doi:10.1007/JHEP01(2022)105
[91] A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to \(t\overline{t}b\overline{b}\) production at the LHC: 1. Quark-antiquark annihilation, JHEP08 (2008) 108 [arXiv:0807.1248] [INSPIRE].
[92] A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Antenna subtraction at NNLO, JHEP09 (2005) 056 [hep-ph/0505111] [INSPIRE].
[93] S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett.98 (2007) 222002 [hep-ph/0703012] [INSPIRE].
[94] G. Somogyi, Z. Trócsányi and V. Del Duca, Matching of singly- and doubly-unresolved limits of tree-level QCD squared matrix elements, JHEP06 (2005) 024 [hep-ph/0502226] [INSPIRE].
[95] Czakon, M., A novel subtraction scheme for double-real radiation at NNLO, Phys. Lett. B, 693, 259 (2010) · doi:10.1016/j.physletb.2010.08.036
[96] R. Boughezal, X. Liu and F. Petriello, N-jettiness soft function at next-to-next-to-leading order, Phys. Rev. D91 (2015) 094035 [arXiv:1504.02540] [INSPIRE].
[97] M. Cacciari, F.A. Dreyer, A. Karlberg, G.P. Salam and G. Zanderighi, Fully Differential Vector-Boson-Fusion Higgs Production at Next-to-Next-to-Leading Order, Phys. Rev. Lett.115 (2015) 082002 [Erratum ibid.120 (2018) 139901] [arXiv:1506.02660] [INSPIRE].
[98] X. Chen, T. Gehrmann, N. Glover, A. Huss and M. Marcoli, Automation of antenna subtraction in colour space: gluonic processes, arXiv:2203.13531 [INSPIRE].
[99] Vermaseren, JAM, Axodraw, Comput. Phys. Commun., 83, 45 (1994) · Zbl 1114.68598 · doi:10.1016/0010-4655(94)90034-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.