×

Error estimates of a theta-scheme for second-order mean field games. (English) Zbl 1522.65137

Summary: We introduce and analyze a new finite-difference scheme, relying on the theta-method, for solving monotone second-order mean field games. These games consist of a coupled system of the Fokker-Planck and the Hamilton-Jacobi-Bellman equation. The theta-method is used for discretizing the diffusion terms: we approximate them with a convex combination of an implicit and an explicit term. On contrast, we use an explicit centered scheme for the first-order terms. Assuming that the running cost is strongly convex and regular, we first prove the monotonicity and the stability of our thetascheme, under a CFL condition. Taking advantage of the regularity of the solution of the continuous problem, we estimate the consistency error of the theta-scheme. Our main result is a convergence rate of order \(\mathcal{O}(h^r)\) for the theta-scheme, where \(h\) is the step length of the space variable and \(r \in (0, 1)\) is related to the Hölder continuity of the solution of the continuous problem and some of its derivatives.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
91-08 Computational methods for problems pertaining to game theory, economics, and finance
91A16 Mean field games (aspects of game theory)
49N80 Mean field games and control
35B65 Smoothness and regularity of solutions to PDEs
35Q91 PDEs in connection with game theory, economics, social and behavioral sciences
35Q84 Fokker-Planck equations

References:

[1] Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: numerical methods. SIAM J. Numer. Anal. 48 (2010) 1136-1162. · Zbl 1217.91019
[2] Y. Achdou and M. Laurière, Mean field games and applications: numerical aspects, in Mean field games, edited by P. Cardaliaguet and A. Porretta. Springer, Cham (2020) 249-307. · Zbl 1457.91057 · doi:10.1007/978-3-030-59837-2_4
[3] Y. Achdou and A. Porretta, Convergence of a finite difference scheme to weak solutions of the system of partial differential equations arising in mean field games. SIAM J. Numer. Anal. 54 (2016) 161-186. · Zbl 1382.65273 · doi:10.1137/15M1015455
[4] Y. Achdou, F. Camilli and I. Capuzzo-Dolcetta, Mean field games: convergence of a finite difference method. SIAM J. Numer. Anal. 51 (2013) 2585-2612. · Zbl 1286.91022 · doi:10.1137/120882421
[5] Y. Achdou, F.J. Buera, J.-M. Lasry, P.-L. Lions and B. Moll, Partial differential equation models in macroeconomics. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 372 (2014) 20130397. · Zbl 1353.91027 · doi:10.1098/rsta.2013.0397
[6] R.A. Adams and J.F. Fournier, Sobolev Spaces. Elsevier (2003). · Zbl 1098.46001
[7] G. Allaire, Numerical Analysis and Optimization: An Introduction to Mathematical Modelling and Numerical Simulation. OUP Oxford (2007). · Zbl 1120.65001
[8] C. Bertucci and A. Cecchin, Mean field games master equations: from discrete to continuous state space. Preprint: arXiv:2207.03191 (2022).
[9] J.F. Bonnans, S. Hadikhanloo and L. Pfeiffer, Schauder estimates for a class of potential mean field games of controls. Appl. Math. Optim. 83 (2021) 1431-1464. · Zbl 1468.91016 · doi:10.1007/s00245-019-09592-z
[10] J.F. Bonnans, P. Lavigne and L. Pfeiffer, Discrete potential mean field games: duality and numerical resolution. Math. Program. (2023) 1-38. DOI: 10.1007/s10107-023-01934-8.
[11] P. Cardaliaguet, Notes on mean field games. Technical report (2010).
[12] P. Cardaliaguet and S. Hadikhanloo, Learning in mean field games: the fictitious play. ESAIM: Control Optim. Calculus Variations 23 (2017) 569-591. · Zbl 1365.35183 · doi:10.1051/cocv/2016004
[13] P. Cardaliaguet and C.-A. Lehalle, Mean field game of controls and an application to trade crowding. Math. Finan. Econ. 12 (2018) 335-363. · Zbl 1397.91084 · doi:10.1007/s11579-017-0206-z
[14] E. Carlini and F.J. Silva, A fully discrete semi-lagrangian scheme for a first order mean field game problem. SIAM J. Numer. Anal. 52 (2014) 45-67. · Zbl 1300.65064 · doi:10.1137/120902987
[15] E. Carlini and F.J. Silva, A semi-lagrangian scheme for a degenerate second order mean field game system. Discrete Continuous Dyn. Syst. 35 (2015) 4269. · Zbl 1332.65138 · doi:10.3934/dcds.2015.35.4269
[16] D.S. Clark, Short proof of a discrete Gronwall inequality. Discrete Appl. Math. 16 (1987) 279-281. · Zbl 0612.39004
[17] S. Hadikhanloo and F.J. Silva, Finite mean field games: fictitious play and convergence to a first order continuous mean field game. J. Math. Pures Appl. 132 (2019) 369-397. · Zbl 1427.35288 · doi:10.1016/j.matpur.2019.02.006
[18] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms II: Advanced Theory and Bundle Methods. Springer Verlag (1993). · Zbl 0795.49002
[19] M. Huang, R.P. Malhamé and P.E. Caines, Large population stochastic dynamic games: closed-loop Mckean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6 (2006) 221-252. · Zbl 1136.91349 · doi:10.4310/CIS.2006.v6.n3.a5
[20] N.V. Krylov, Lectures on Elliptic and Parabolic Equations in Hölder Spaces. Vol. 12. American Mathematical Society (1996). · Zbl 0865.35001
[21] N.V. Krylov, Lectures on Elliptic and Parabolic Equations in Sobolev Spaces. Vol. 96. American Mathematical Society (2008). · Zbl 1147.35001 · doi:10.1090/gsm/096
[22] A. Lachapelle, J. Salomon and G. Turinici, Computation of mean field equilibria in economics. Math. Models Methods Appl. Sci. 20 (2010) 567-588. · Zbl 1193.91018 · doi:10.1142/S0218202510004349
[23] O.A. Ladyženskaja, V.A. Solonnikov and N.N. Ural’ceva, Linear and Quasi-linear Equations of Parabolic Type. Vol. 23. American Mathematical Society (1988).
[24] J.-M. Lasry and P.-L. Lions, Mean field games. Jpn J. Math. 2 (2007) 229-260. · Zbl 1156.91321 · doi:10.1007/s11537-007-0657-8
[25] P. Lavigne and L. Pfeiffer, Generalized conditional gradient and learning in potential mean field games. Preprint: https://arXiv:2109.05785.
[26] J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Springer Verlag (1971). · Zbl 0203.09001 · doi:10.1007/978-3-642-65024-6
[27] Y. Nesterov, Lectures on Convex Optimization. Vol. 137. Springer (2018). · Zbl 1427.90003 · doi:10.1007/978-3-319-91578-4
[28] J.W. Thomas, Numerical Partial Differential Equations: Finite Difference Methods. Vol. 22. Springer Science & Business Media (1995). · Zbl 0831.65087 · doi:10.1007/978-1-4899-7278-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.