×

On joint estimation of Gaussian graphical models for spatial and temporal data. (English) Zbl 1522.62179

Summary: In this article, we first propose a Bayesian neighborhood selection method to estimate Gaussian Graphical Models (GGMs). We show the graph selection consistency of this method in the sense that the posterior probability of the true model converges to one. When there are multiple groups of data available, instead of estimating the networks independently for each group, joint estimation of the networks may utilize the shared information among groups and lead to improved estimation for each individual network. Our method is extended to jointly estimate GGMs in multiple groups of data with complex structures, including spatial data, temporal data, and data with both spatial and temporal structures. Markov random field (MRF) models are used to efficiently incorporate the complex data structures. We develop and implement an efficient algorithm for statistical inference that enables parallel computing. Simulation studies suggest that our approach achieves better accuracy in network estimation compared with methods not incorporating spatial and temporal dependencies when there are shared structures among the networks, and that it performs comparably well otherwise. Finally, we illustrate our method using the human brain gene expression microarray dataset, where the expression levels of genes are measured in different brain regions across multiple time periods.
{© 2017, The International Biometric Society}

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis

Software:

glasso; HdBCS; tsbridge; KEGG

References:

[1] Bedogni, F., Hodge, R. D., Elsen, G. E., Nelson, B. R., Daza, R. A., Beyer, R. P., et al. (2010). Tbr1 regulates regional and laminar identity of postmitotic neurons in developing neocortex. Proceedings of the National Academy of Sciences107, 13129-13134.
[2] Besag, J. (1986). On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society, Series B (Methodological)259-302. · Zbl 0609.62150
[3] Cai, T., Liu, W., and Luo, X. (2011). A constrained l1 minimization approach to sparse precision matrix estimation. Journal of the American Statistical Association106, 594-607. · Zbl 1232.62087
[4] Chuang, H.‐C., Huang, T.‐N., and Hsueh, Y.‐P. (2014). Neuronal excitation upregulates tbr1, a high‐confidence risk gene of autism, mediating grin2b expression in the adult brain. Frontiers in Cellular Neuroscience8, 280.
[5] Chun, H., Zhang, X., and Zhao, H. (2015). Gene regulation network inference with joint sparse gaussian graphical models. Journal of Computational and Graphical Statistics24, 954-974.
[6] Danaher, P., Wang, P., and Witten, D. M. (2014). The joint graphical lasso for inverse covariance estimation across multiple classes. Journal of the Royal Statistical Society, Series B (Statistical Methodology)76, 373-397. · Zbl 07555455
[7] Dobra, A., Hans, C., Jones, B., Nevins, J. R., Yao, G., and West, M. (2004). Sparse graphical models for exploring gene expression data. Journal of Multivariate Analysis90, 196-212. · Zbl 1047.62104
[8] Dobra, A., Lenkoski, A., and Rodriguez, A. (2011). Bayesian inference for general gaussian graphical models with application to multivariate lattice data. Journal of the American Statistical Association106, 1418-1433. · Zbl 1234.62018
[9] Friedman, J., Hastie, T., and Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics9, 432-441. · Zbl 1143.62076
[10] George, E. I. and McCulloch, R. E. (1993). Variable selection via gibbs sampling. Journal of the American Statistical Association88, 881-889.
[11] George, E. I. and McCulloch, R. E. (1997). Approaches for bayesian variable selection. Statistica sinica7, 339-373. · Zbl 0884.62031
[12] Guo, J., Levina, E., Michailidis, G., and Zhu, J. (2011). Joint estimation of multiple graphical models. Biometrikapage asq060. · Zbl 1214.62058
[13] Hastie, T., Tibshirani, R., Friedman, J., Hastie, T., Friedman, J., and Tibshirani, R. (2009). The Elements of Statistical Learning, volume 2. Berlin: Springer series in statistics Springer. · Zbl 1273.62005
[14] Kanehisa, M. and Goto, S. (2000). Kegg: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research28, 27-30.
[15] Kang, H. J., Kawasawa, Y. I., Cheng, F., Zhu, Y., Xu, X., Li, M., et al. (2011). Spatio‐temporal transcriptome of the human brain. Nature478, 483-489.
[16] Li, F. and Zhang, N. R. (2010). Bayesian variable selection in structured high‐dimensional covariate spaces with applications in genomics. Journal of the American Statistical Association105, 1202-1214. · Zbl 1390.62027
[17] Lin, Z., Sanders, S. J., Li, M., Sestan, N., State, M. W., and Zhao, H. (2015). A markov random field‐based approach to characterizing human brain development using spatial-temporal transcriptome data. The Annals of Applied Statistics9, 429-451. · Zbl 1454.62352
[18] Meinshausen, N. and Bühlmann, P. (2006). High‐dimensional graphs and variable selection with the lasso. The Annals of Statistics1436-1462. · Zbl 1113.62082
[19] Meng, X.‐L. and Wong, W. H. (1996). Simulating ratios of normalizing constants via a simple identity: a theoretical exploration. Statistica Sinica831-860. · Zbl 0857.62017
[20] Narisetty, N. N. and He, X. (2014). Bayesian variable selection with shrinking and diffusing priors. The Annals of Statistics42, 789-817. · Zbl 1302.62158
[21] Newton, M. A., Noueiry, A., Sarkar, D., and Ahlquist, P. (2004). Detecting differential gene expression with a semiparametric hierarchical mixture method. Biostatistics5, 155-176. · Zbl 1096.62124
[22] Orchard, P., Agakov, F., and Storkey, A. (2013). Bayesian inference in sparse gaussian graphical models. arXiv preprint arXiv:1309.7311.
[23] Peterson, C., Stingo, F., and Vannucci, M. (2015). Bayesian inference of multiple gaussian graphical models. Journal of the American Statistical Association110, 159-174. · Zbl 1373.62106
[24] Rual, J.‐F., Venkatesan, K., Hao, T., Hirozane‐Kishikawa, T., Dricot, A., Li, N., et al. (2005). Towards a proteome‐scale map of the human protein-protein interaction network. Nature437, 1173-1178.
[25] Shen‐Orr, S. S., Milo, R., Mangan, S., and Alon, U. (2002). Network motifs in the transcriptional regulation network of escherichia coli. Nature Genetics31, 64-68.
[26] Varin, C., Reid, N., and Firth, D. (2011). An overview of composite likelihood methods. Statistica Sinica21, 5-42. · Zbl 1534.62022
[27] Wang, H. (2012). Bayesian graphical lasso models and efficient posterior computation. Bayesian Analysis7, 867-886. · Zbl 1330.62041
[28] Willsey, A. J., Sanders, S. J., Li, M., Dong, S., Tebbenkamp, A. T., Muhle, R. A., et al. (2013). Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell155, 997-1007.
[29] Yuan, M. and Lin, Y. (2007). Model selection and estimation in the gaussian graphical model. Biometrika94, 19-35. · Zbl 1142.62408
[30] Zhang, B. and Horvath, S. (2005). A general framework for weighted gene co‐expression network analysis. Statistical Applications in Genetics and Molecular Biology4, 1128. · Zbl 1077.92042
[31] Zhang, C.‐H. and Huang, J. (2008). The sparsity and bias of the lasso selection in high‐dimensional linear regression. The Annals of Statistics1567-1594. · Zbl 1142.62044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.