×

Propagation of anisotropic Gelfand-Shilov wave front sets. (English) Zbl 1522.46031

The author considers the analogue of the Gabor wave-front set in the setting of anisotropic Gelfand-Shilov ultradistributions of Beurling type \(\Sigma^{s\,'}_t(\mathbb{R}^d)\), \(s+t>1\). It is defined as follows. Let \(u\in\Sigma^{s\,'}_t(\mathbb{R}^d)\) and let \(\psi\) be a test function in \(\Sigma^s_t(\mathbb{R}^d)\). Then \((x_0,\xi_0)\in\mathbb{R}^d\times (\mathbb{R}^d\backslash\{0\})\) does not belong to the anisotropic \(t,s\)-Gelfand-Shilov wave front set \(WF^{t,s}(u)\) of \(u\) if there is an open set \(U\subseteq \mathbb{R}^d\times (\mathbb{R}^d\backslash\{0\})\) containing \((x_0,\xi_0)\) such that \[ \sup_{\lambda>0,\, (x,\xi)\in U} e^{r\lambda}|V_{\psi}u(\lambda^tx,\lambda^s\xi)|<\infty\text{ for all }r>0; \] here, \(V_{\psi}u\) stands for the short-time Fourier transform of \(u\) with window \(\psi\). The main result of the article describes the propagation of singularities with respect to this wave front set of an operator \(\mathcal{K}:\Sigma^{s\,'}_t(\mathbb{R}^d)\rightarrow \Sigma^{s\,'}_t(\mathbb{R}^d)\); i.e., it shows that for \(u\in\Sigma^{s\,'}_t(\mathbb{R}^d)\), \(WF^{t,s}(\mathcal{K}u)\) is included in a set built, in a precise manner, out of \(WF^{t,s}(K)\) and \(WF^{t,s}(u)\) where \(K\) is the kernel of \(\mathcal{K}\).
In the last section, the author applies this result to a class of evolution equations.

MSC:

46F05 Topological linear spaces of test functions, distributions and ultradistributions
46F12 Integral transforms in distribution spaces
35A27 Microlocal methods and methods of sheaf theory and homological algebra applied to PDEs
47G30 Pseudodifferential operators
35A18 Wave front sets in context of PDEs
81S30 Phase-space methods including Wigner distributions, etc. applied to problems in quantum mechanics
58J47 Propagation of singularities; initial value problems on manifolds
47D06 One-parameter semigroups and linear evolution equations

References:

[1] Abdeljawad, A.; Cappiello, M.; Toft, J., Pseudo-differential calculus in anisotropic Gelfand-Shilov setting, Integr. Equ. Oper. Theory., 91, 26 (2019) · Zbl 1419.35262 · doi:10.1007/s00020-019-2518-2
[2] Boggiatto, P.; Oliaro, A.; Wahlberg, P., The wave front set of the Wigner distribution and instantaneous frequency, J. Fourier Anal. Appl., 18, 410-438 (2012) · Zbl 1248.42011 · doi:10.1007/s00041-011-9201-6
[3] Cappiello, M.; Schulz, R., Microlocal analysis of quasianalytic Gelfand-Shilov type ultradistributions, Compl. Var. Elliptic Equ., 61, 4, 538-561 (2016) · Zbl 1339.35014 · doi:10.1080/17476933.2015.1106481
[4] Carypis, E., Wahlberg, P.: Propagation of exponential phase space singularities for Schrödinger equations with quadratic Hamiltonians. J. Fourier Anal. Appl. 23(3), 530-571 (2017). (Correction: 27:35 (2021)) · Zbl 1377.35228
[5] Cordero, E.; Rodino, L., Time-Frequency Analysis of Operators (2020), Berlin: De Gruyter, Berlin · Zbl 07204958 · doi:10.1515/9783110532456
[6] Gel’fand, IM; Shilov, GE, Generalized Functions (1968), New York: Academic Press, New York · Zbl 0159.18301
[7] Gröchenig, K., Foundations of Time-Frequency Analysis (2001), Boston: Birkhäuser, Boston · Zbl 0966.42020 · doi:10.1007/978-1-4612-0003-1
[8] Hitrik, M.; Pravda-Starov, K., Spectra and semigroup smoothing for non-elliptic quadratic operators, Math. Ann., 344, 801-846 (2009) · Zbl 1171.47038 · doi:10.1007/s00208-008-0328-y
[9] Hörmander, L., The Analysis of Linear Partial Differential Operators (1990), Berlin: Springer, Berlin · Zbl 0687.35002
[10] Hörmander, L.; Cattabriga, L.; Rodino, L., Quadratic hyperbolic operators, Microlocal Analysis and Applications, 118-160 (1991), Berlin: Springer, Berlin · Zbl 0761.35004 · doi:10.1007/BFb0085123
[11] Hörmander, L., Symplectic classification of quadratic forms, and general Mehler formulas, Math. Z., 219, 413-449 (1995) · Zbl 0829.35150 · doi:10.1007/BF02572374
[12] Krantz, SG; Parks, HR, The Implicit Function Theorem (2003), Boston: Birkhäuser, Boston · Zbl 1269.58003 · doi:10.1007/978-1-4612-0059-8
[13] Nakamura, S., Propagation of the homogeneous wave front set for Schrödinger equations, Duke Math. J., 126, 2, 349-367 (2005) · Zbl 1130.35023 · doi:10.1215/S0012-7094-04-12625-9
[14] Nicola, F.; Rodino, L., Global Pseudo-Differential Calculus on Euclidean Spaces (2010), Basel: Birkhäuser, Basel · Zbl 1257.47002 · doi:10.1007/978-3-7643-8512-5
[15] Parenti, C.; Rodino, L., Parametrices for a class of pseudo differential operators I, Ann. Mat. Pura Appl., 125, 4, 221-254 (1980) · Zbl 0406.35065 · doi:10.1007/BF01789413
[16] Petersson, A.: Fourier characterizations and non-triviality of Gelfand-Shilov spaces, with applications to Toeplitz operators. arXiv:2202.00938 [math.FA] (2022)
[17] Pravda-Starov, K.; Rodino, L.; Wahlberg, P., Propagation of Gabor singularities for Schrödinger equations with quadratic Hamiltonians, Math. Nachr., 291, 1, 128-159 (2018) · Zbl 1384.35107 · doi:10.1002/mana.201600410
[18] Reed, M.; Simon, B., Methods of Modern Mathematical Physics (1980), New York: Academic Press, New York · Zbl 0459.46001
[19] Rodino, L., Wahlberg, P.: Anisotropic global microlocal analysis for tempered distributions. Monatsh. Math. (in press) (2022)
[20] Rodino, L., Wahlberg, P.: Microlocal analysis of Gelfand-Shilov spaces. arXiv:2202.05543 [math.AP] (2022)
[21] Rodino, L., Linear Partial Differential Operators in Gevrey Spaces (1993), Singapore: World Scientific, Singapore · Zbl 0869.35005 · doi:10.1142/1550
[22] Rodino, L.; Wahlberg, P., The Gabor wave front set, Monaths. Math., 173, 4, 625-655 (2014) · Zbl 1366.42030 · doi:10.1007/s00605-013-0592-0
[23] Schaefer, HH; Wolff, MP, Topological Vector Spaces (1999), New York: Springer, New York · Zbl 0983.46002 · doi:10.1007/978-1-4612-1468-7
[24] Schulz, R.; Wahlberg, P., Equality of the homogeneous and the Gabor wave front set, Commun. PDE, 42, 5, 703-730 (2017) · Zbl 1373.35345 · doi:10.1080/03605302.2017.1300173
[25] Toft, J., The Bargmann transform on modulation and Gelfand-Shilov spaces, with applications to Toeplitz and pseudo-differential operators, J. Pseudo-Differ. Oper. Appl., 3, 2, 145-227 (2012) · Zbl 1257.42033 · doi:10.1007/s11868-011-0044-3
[26] Wahlberg, P., Propagation of polynomial phase space singularities for Schrödinger equations with quadratic Hamiltonians, Math. Scand., 122, 1, 107-140 (2018) · Zbl 1417.35155 · doi:10.7146/math.scand.a-97187
[27] Zhu, H.: Propagation of singularities for gravity-capillary water waves. arXiv:1810.09339 [math.AP] (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.