×

Bourgain-Morrey spaces meet structure of Triebel-Lizorkin spaces. (English) Zbl 1522.46028

Summary: Let \(0<q\le p\le \infty\), \(r\in (0,\infty ]\), and \({\mathcal{M}}^p_{q,r}({\mathbb{R}}^n)\) denote the Bourgain-Morrey space which was introduced by J. Bourgain [Lect. Notes Math. 1469, 179–191 (1991; Zbl 0792.42004)] and has proved important in the study of some linear and nonlinear partial differential equations. In this article, via cleverly combining both the structure of Bourgain-Morrey spaces and the structure of Triebel-Lizorkin spaces and adding an extra exponent \(\tau \in (0,\infty ]\), the authors introduce a new class of function spaces, called Triebel-Lizorkin-Bourgain-Morrey spaces \({\mathcal{M}}{\dot{F}}^{p,\tau }_{q,r}({\mathbb{R}}^n)\). The authors show that \({\mathcal{M}}{\dot{F}}^{p,\tau }_{q,r}({\mathbb{R}}^n)\) is just a bridge connecting Bourgain-Morrey spaces and global Morrey spaces. In addition, by fully using exquisite geometrical properties of cubes of Euclidean spaces, the authors also explore various fundamental real-variable properties of \({\mathcal{M}}{\dot{F}}^{p,\tau }_{q,r}({\mathbb{R}}^n)\) as well as its relations with other Morrey type spaces, such as Besov-Bourgain-Morrey spaces and local Morrey spaces. Finally, via finding an equivalent quasi-norm of Herz spaces and making full use of both the Calderón product and the sparse family of dyadic grids, the authors obtain the sharp boundedness on \({\mathcal{M}}{\dot{F}}^{p,\tau }_{q,r}({\mathbb{R}}^n)\) of classical operators including the Hardy-Littlewood maximal operator, the Calderón-Zygmund operator, and the fractional integral.

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
46B70 Interpolation between normed linear spaces
42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B25 Maximal functions, Littlewood-Paley theory
42B35 Function spaces arising in harmonic analysis

Citations:

Zbl 0792.42004
Full Text: DOI

References:

[1] Adams, DR, Morrey Spaces. Lecture Notes in Applied and Numerical Harmonic Analysis (2015), Cham: Birkhäuser/Springer, Cham · Zbl 1339.42001
[2] Bégout, P.; Vargas, A., Mass concentration phenomena for the \(L^2\)-critical nonlinear Schrödinger equation, Trans. Am. Math. Soc., 359, 5257-5282 (2007) · Zbl 1171.35109 · doi:10.1090/S0002-9947-07-04250-X
[3] Bourgain, J.: On the restriction and multiplier problems in \({{\mathbb{R}}}^3\). In: Geometric Aspects of Functional Analysis (1989-90), pp. 179-191, Lecture Notes in Mathematics, vol. 1469. Springer, Berlin (1991) · Zbl 0792.42004
[4] Bourgain, J., Refinements of Strichartz’ inequality and applications to 2D-NLS with critical nonlinearity, Int. Math. Res. Notices, 1998, 5, 253-283 (1998) · Zbl 0917.35126 · doi:10.1155/S1073792898000191
[5] Calderón, A-P, Intermediate spaces and interpolation, the complex method, Studia Math., 24, 113-190 (1964) · Zbl 0204.13703 · doi:10.4064/sm-24-2-113-190
[6] Chen, D.; Chen, X.; Sun, L., Well-posedness of the Euler equation in Triebel-Lizorkin-Morrey spaces, Appl. Anal., 99, 772-795 (2020) · Zbl 1439.35379 · doi:10.1080/00036811.2018.1510491
[7] Cruz-Uribe, D.; Moen, K., One and two weight norm inequalities for Riesz potentials, Ill. J. Math., 57, 295-323 (2013) · Zbl 1297.42022
[8] del Campo, R.; Fernández, A.; Mayoral, F.; Naranjo, F., Orlicz spaces associated to a quasi-Banach function space: applications to vector measures and interpolation, Collect. Math., 72, 481-499 (2021) · Zbl 1482.46031 · doi:10.1007/s13348-020-00295-1
[9] Di Fazio, G.; Nguyen, T., Regularity estimates in weighted Morrey spaces for quasilinear elliptic equations, Rev. Mat. Iberoam., 36, 1627-1658 (2020) · Zbl 1467.35156 · doi:10.4171/rmi/1178
[10] Di Fazio, G.; Ragusa, MA, Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients, J. Funct. Anal., 112, 241-256 (1993) · Zbl 0822.35036 · doi:10.1006/jfan.1993.1032
[11] Feuto, J., Norm inequalities in generalized Morrey spaces, J. Fourier Anal. Appl., 20, 896-909 (2014) · Zbl 1320.47048 · doi:10.1007/s00041-014-9337-2
[12] Folland, G.B.: Real Analysis. Modern Techniques and Their Applications, 2nd edn, Pure and Applied Mathematics (New York). Wiley, New York (1999) · Zbl 0924.28001
[13] Grafakos, L.: Classical Fourier Analysis, 3rd edn, Graduate Texts in Mathematics, vol. 249. Springer, New York (2014) · Zbl 1304.42001
[14] Grafakos, L.: Modern Fourier Analysis, 3rd edn, Graduate Texts in Math., vol. 250. Springer, New York (2014) · Zbl 1304.42002
[15] Guliev, VS; Mustafaev, RCh, Fractional integrals in spaces of functions defined on spaces of homogeneous type, Anal. Math., 24, 181-200 (1998) · Zbl 0917.42019
[16] Hatano, N., Nogayama, T., Sawano, Y., Hakim, D.I.: Bourgain-Morrey spaces and their applications to boundedness of operators. J. Funct. Anal. 284, Paper No. 109720 (2023) · Zbl 1508.42027
[17] Kalton, N., Mayboroda, S., Mitrea, M.: Interpolation of Hardy-Sobolev-Besov-Triebel-Lizorkin spaces and applications to problems in partial differential equations. In: Interpolation Theory and Applications, pp. 121-177, Contemp. Math., vol. 445. Amer. Math. Soc., Providence (2007) · Zbl 1158.46013
[18] Kenig, C.E., Ponce, G., Vega, L.: On the concentration of blow up solutions for the generalized KdV equation critical in \(L^2\). In: Nonlinear Wave Equations (Providence, RI, 1998), pp. 131-156, Contemp. Math., vol. 263. Amer. Math. Soc., Providence (2000) · Zbl 0970.35125
[19] Lemarié-Rieusset, PG, The Navier-Stokes Problem in the 21st Century (2016), Boca Raton: CRC Press, Boca Raton · Zbl 1342.76029 · doi:10.1201/b19556
[20] Li, Y., Yang, D., Huang, L.: Real-Variable Theory of Hardy Spaces Associated with Generalized Herz Spaces of Rafeiro and Samko. Lecture Notes in Mathematics, vol. 2320. Springer, Cham (2022) · Zbl 1521.42001
[21] Lu, S.; Yang, D., The local versions of \(H^p({{\mathbb{R} }^n})\) spaces at the origin, Studia Math., 116, 103-131 (1995) · Zbl 0935.42012 · doi:10.4064/sm-116-2-103-131
[22] Lu, S.; Yang, D.; Hu, G., Herz Type Spaces and Their Applications (2008), Beijing: Science Press, Beijing
[23] Masaki, S.: Two minimization problems on non-scattering solutions to mass-subcritical nonlinear Schrödinger equation. arXiv:1605.09234
[24] Masaki, S., Segata, J.: Existence of a minimal non-scattering solution to the mass-subcritical generalized Korteweg-de Vries equation. Ann. Inst. H. Poincaré C Anal. Non Linéaire 35, 283-326 (2018) · Zbl 1383.35196
[25] Masaki, S.; Segata, J., Refinement of Strichartz estimates for Airy equation in nondiagonal case and its application, SIAM J. Math. Anal., 50, 2839-2866 (2018) · Zbl 1392.35265 · doi:10.1137/17M1153893
[26] Mastyło, M.; Sawano, Y., Complex interpolation and Calderón-Mityagin couples of Morrey spaces, Anal. PDE, 12, 1711-1740 (2019) · Zbl 1435.46018 · doi:10.2140/apde.2019.12.1711
[27] Mastyło, M.; Sawano, Y., Applications of interpolation methods and Morrey spaces to elliptic PDEs, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 21, 999-1021 (2020) · Zbl 1480.46032
[28] Mastyło, M.; Sawano, Y.; Tanaka, H., Morrey-type space and its Köthe dual space, Bull. Malays. Math. Sci. Soc., 41, 1181-1198 (2018) · Zbl 1393.42007 · doi:10.1007/s40840-016-0382-7
[29] Morrey, CB, On the solutions of quasi-linear elliptic partial differential equations, Trans. Am. Math. Soc., 43, 126-166 (1938) · Zbl 0018.40501 · doi:10.1090/S0002-9947-1938-1501936-8
[30] Moyua, A., Vargas, A., Vega, L.: Schrödinger maximal function and restriction properties of the Fourier transform. Internat. Math. Res. Notices, pp. 793-815 (1996) · Zbl 0868.35024
[31] Moyua, A.; Vargas, A.; Vega, L., Restriction theorems and maximal operators related to oscillatory integrals in \({{\mathbb{R} }}^3\), Duke Math. J., 96, 547-574 (1999) · Zbl 0946.42011 · doi:10.1215/S0012-7094-99-09617-5
[32] Nakai, E., Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces, Math. Nachr., 166, 95-103 (1994) · Zbl 0837.42008 · doi:10.1002/mana.19941660108
[33] Nakai, E., Orlicz-Morrey spaces and the Hardy-Littlewood maximal function, Studia Math., 188, 193-221 (2008) · Zbl 1163.46020 · doi:10.4064/sm188-3-1
[34] Nakai, E.: Pointwise multipliers on Musielak-Orlicz-Morrey spaces. In: Function Spaces and Inequalities, pp. 257-281, Springer Proc. Math. Stat., vol. 206. Springer, Singapore (2017) · Zbl 1390.46034
[35] Nakai, E.; Sadasue, G., Commutators of fractional integrals on martingale Morrey spaces, Math. Inequal. Appl., 22, 631-655 (2019) · Zbl 1488.60115
[36] Sawano, Y.: Theory of Besov Spaces, Dev. Math., vol. 56. Springer, Singapore (2018) · Zbl 1414.46004
[37] Sawano, Y.; Sugano, S., Complex interpolation and the Adams theorem, Potential Anal., 54, 299-305 (2021) · Zbl 1477.42025 · doi:10.1007/s11118-020-09827-7
[38] Sawano, Y.; Tanaka, H., Morrey spaces for non-doubling measures, Acta Math. Sin. (Engl. Ser.), 21, 1535-1544 (2005) · Zbl 1129.42403 · doi:10.1007/s10114-005-0660-z
[39] Sawano, Y.; Sugano, S.; Tanaka, H., Generalized fractional integral operators and fractional maximal operators in the framework of Morrey spaces, Trans. Am. Math. Soc., 363, 6481-6503 (2011) · Zbl 1229.42024 · doi:10.1090/S0002-9947-2011-05294-3
[40] Sawano, Y.; Sugano, S.; Tanaka, H., Orlicz-Morrey spaces and fractional operators, Potential Anal., 36, 517-556 (2012) · Zbl 1242.42017 · doi:10.1007/s11118-011-9239-8
[41] Sawano, Y.; Di Fazio, G.; Hakim, D., Morrey Spaces: Introduction and Applications to Integral Operators and PDE’s (2020), New York: Chapman and Hall/CRC, New York · Zbl 1482.42002 · doi:10.1201/9780429085925
[42] Sawano, Y.; Di Fazio, G.; Hakim, D., Morrey Spaces: Introduction and Applications to Integral Operators and PDE’s (2020), New York: Chapman and Hall/CRC, New York · Zbl 1482.42002 · doi:10.1201/9780429085925
[43] Shao, S., The linear profile decomposition for the airy equation and the existence of maximizers for the airy Strichartz inequality, Anal. PDE, 2, 83-117 (2009) · Zbl 1185.35239 · doi:10.2140/apde.2009.2.83
[44] Shen, Z., Boundary value problems in Morrey spaces for elliptic systems on Lipschitz domains, Am. J. Math., 125, 1079-1115 (2003) · Zbl 1046.35029 · doi:10.1353/ajm.2003.0035
[45] Triebel, H., Theory of Function Spaces, Monographs in Mathematics (1983), Basel: Birkhuser Verlag, Basel · Zbl 0546.46028 · doi:10.1007/978-3-0346-0416-1
[46] Ullrich, T.: Continuous characterizations of Besov-Lizorkin-Triebel spaces and new interpretations as coorbits. J. Funct. Spaces Appl., Art. ID 163213 (2012) · Zbl 1246.46036
[47] Yang, D.; Yuan, W., A new class of function spaces connecting Triebel-Lizorkin spaces and \(Q\) spaces, J. Funct. Anal., 255, 2760-2809 (2008) · Zbl 1169.46016 · doi:10.1016/j.jfa.2008.09.005
[48] Yuan, W., Sickel, W., Yang, D.: Morrey and Campanato Meet Besov, Lizorkin and Triebel. Lecture Notes in Mathematics, vol. 2005. Springer, Berlin (2010) · Zbl 1207.46002
[49] Zhang, J., Yang, Y., Zhang, Q.: On the stability to Keller-Segel system coupled with Navier-Stokes equations in Besov-Morrey spaces. Nonlinear Anal. Real World Appl. 71, Paper No. 103828 (2023) · Zbl 1519.35347
[50] Zhao, Y., Sawano, Y., Tao, J., Yang, D., Yuan, W.: Bourgain-Morrey spaces mixed with structure of Besov spaces. Proc. Steklov Inst. Math. (2023) (submitted)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.