×

Flow measurement: an inverse problem formulation. (English) Zbl 1522.35589

Summary: This paper proposes a new mathematical formulation for flow measurement based on the inverse source problem for wave equations with partial boundary measurement. Inspired by the design of acoustic Doppler current profilers (ADCPs), we formulate an inverse source problem that can recover the flow field from the observation data on boundary receivers. To our knowledge, this is the first mathematical model of flow measurement using partial differential equations. This model is proved well-posed, and the corresponding algorithm is derived to compute the velocity field efficiently. Extensive numerical simulations are performed to demonstrate the accuracy and robustness of our model. The comparison results demonstrate that our model is ten times more accurate than ADCP. Our formulation is capable of simulating a variety of practical measurement scenarios.

MSC:

35R30 Inverse problems for PDEs
35Q35 PDEs in connection with fluid mechanics
65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs

Software:

k-Wave; Palabos

References:

[1] Andrle, M. and Badia, A. El, On an inverse source problem for the heat equation. Application to a pollution detection problem, II, Inverse Probl. Sci. Eng., 23 (2015), pp. 389-412. · Zbl 1326.65121
[2] Bao, G., Ammari, H., and Fleming, J. L., An inverse source problem for Maxwell’s equations in magnetoencephalography, SIAM J. Appl. Math., 62 (2002), pp. 1369-1382. · Zbl 1003.35123
[3] Bao, G., Hu, G., Kian, Y., and Yin, T., Inverse source problems in elastodynamics, Inverse Problems, 34 (2018), 045009. · Zbl 1404.65137
[4] Bao, G., Lin, J., and Triki, F., An inverse source problem with multiple frequency data, C. R. Math., 349 (2011), pp. 855-859. · Zbl 1231.35296
[5] Bera, S. C. and Mandal, H., A flow measurement technique using a noncontact capacitance-type orifice transducer for a conducting liquid, IEEE Trans. Instrum. Meas., 61 (2012), pp. 2553-2559.
[6] Best, J. L., Flow dynamics at river channel confluences: Implications for sediment transport and bed morphology, in Recent Developments in Fluvial Sedimentology, , Ethridge, F. G., Flores, R. M., and Harvey, M. D., eds., Society of Economic Paleontologists and Mineralogists, Tulsa, OK, 1987, pp. 27-35.
[7] Blinco, P. H. and Partheniades, E., Turbulence characteristics in free surface flows over smooth and rough boundaries, J. Hydraul. Res., 9 (1971), pp. 43-71.
[8] Brox, T., Bruhn, A., Papenberg, N., and Weickert, J., High accuracy optical flow estimation based on a theory for warping, in Computer Vision - ECCV 2004, , Pajdla, T. and Matas, J., eds., Springer, Berlin, 2004, pp. 25-36. · Zbl 1098.68736
[9] Bruhn, A., Weickert, J., and Schnörr, C., Lucas/Kanade meets Horn/Schunck: Combining local and global optic flow methods, Int. J. Comput. Vis., 61 (2005), pp. 211-231. · Zbl 1477.68337
[10] Burgholzer, P., Matt, G. J., Haltmeier, M., and Paltauf, G., Exact and approximative imaging methods for photoacoustic tomography using an arbitrary detection surface, Phys. Rev. E, 75 (2007), 046706.
[11] Cheney, M. and Borden, B., Fundamentals of Radar Imaging, , , SIAM, Philadelphia, 2009. · Zbl 1192.78002
[12] Cheng, J., Isakov, V., and Lu, S., Increasing stability in the inverse source problem with many frequencies, J. Differential Equations, 5 (2016), pp. 4786-4804. · Zbl 1401.35339
[13] de Hoop, M. V., Oksanen, L., and Tittelfitz, J., Uniqueness for a seismic inverse source problem modeling a subsonic rupture, Comm. Partial Differential Equations, 41 (2016), pp. 1895-1917. · Zbl 1359.35232
[14] de Hoop, M. V., Qiu, L., and Scherzer, O., Local analysis of inverse problems: Hölder stability and iterative reconstruction, Inverse Problems, 28 (2012), 045001. · Zbl 1319.47049
[15] de Hoop, M. V., Qiu, L., and Scherzer, O., An analysis of a multi-level projected steepest descent iteration for nonlinear inverse problems in Banach spaces subject to stability constraints, Numer. Math., 129 (2015), pp. 127-148. · Zbl 1317.65133
[16] Durgesh, V., Thomson, J., Richmond, M. C., and Polagye, B. L., Noise correction of turbulent spectra obtained from acoustic Doppler velocimeters, Flow Meas. Instrum., 37 (2014), pp. 29-41.
[17] Elgar, S., Raubenheimer, B., and Guza, R. T., Current meter performance in the surf zone, J. Atmos. Ocean. Tech., 18 (2001), pp. 1735-1746.
[18] Eller, M., Hoskins, P., and Kunyansky, L., Microlocally accurate solution of the inverse source problem of thermoacoustic tomography, Inverse Problems, 36 (2020), 085012. · Zbl 1448.92110
[19] Evans, L. C., Partial Differential Equations, American Mathematical Society, Providence, RI, 2010. · Zbl 1194.35001
[20] Garnier, J. and Fink, M., Super-resolution in time-reversal focusing on a moving source, Wave Motion, 53 (2015), pp. 80-93. · Zbl 1454.35059
[21] Hristova, Y., Kuchment, P., and Nguyen, L., Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media, Inverse Problems, 24 (2008), 055006. · Zbl 1180.35563
[22] Isakov, V., Inverse Source Problems, American Mathematical Society, Providence, RI, 1990. · Zbl 0721.31002
[23] Isakov, V., On uniqueness in the inverse conductivity problem with local data, Inverse Probl. Imaging, 1 (2007), pp. 95-105. · Zbl 1125.35113
[24] Jebawy, H. A., Elbadia, A., and Triki, F., Inverse moving point source problem for the wave equation, Inverse Problems, 38 (2022), 125003. · Zbl 1501.35452
[25] Karman, T. V., Aerodynamics, McGraw-Hill, New York, 1963.
[26] Kirkeby, A., Henriksen, M. T. R., and Karamehmedović, M., Stability of the inverse source problem for the Helmholtz equation in R3, Inverse Problems, 36 (2020), 055007. · Zbl 1469.35253
[27] Klingel, P. and Knobloch, A., A review of water balance application in water supply, J. AWWA, 107 (2015), pp. E339-E350.
[28] Kuchment, P. and Kunyansky, L., Mathematics of photoacoustic and thermoacoustic tomography, in Handbook of Mathematical Methods in Imaging, Scherzer, O., ed., Springer, New York, 2015, pp. 1117-1167. · Zbl 1331.92076
[29] Latt, J., Malaspinas, O., Kontaxakis, D., Parmigiani, A., Lagrava, D., Brogi, F., Belgacem, M. B., Thorimbert, Y., Leclaire, S., Li, S., Marson, F., Lemus, J., Kotsalos, C., Conradin, R., Coreixas, C., Petkantchin, R., Raynaud, F., Beny, J., and Chopard, B., Palabos: Parallel lattice Boltzmann solver, Comput. Math. Appl., 81 (2021), pp. 334-350. · Zbl 1524.76288
[30] Li, J., Zeng, Z., Sun, J., and Liu, F., Through-wall detection of human being’s movement by UWB radar, IEEE Geosci. Remote Sensing Lett., 9 (2012), pp. 1079-1083.
[31] Li, P. and Yuan, G., Increasing stability for the inverse source scattering problem with multi-frequencies, Inverse Probl. Imaging, 11 (2017), pp. 745-759. · Zbl 1366.35241
[32] Lin, G., Zhang, Z., and Zhang, Z., Theoretical and numerical studies of inverse source problem for the linear parabolic equation with sparse boundary measurements, Inverse Problems, 38 (2022), 125007. · Zbl 1503.35287
[33] Liptak, B. G., ed., Instrument Engineers’ Handbook, Volume One: Process Measurement and Analysis, 4th ed., CRC Press, Boca Raton, FL, 2003.
[34] Liu, C., Beyond Pixels : Exploring New Representations and Applications for Motion Analysis, thesis, Massachusetts Institute of Technology, Cambridge, MA, 2009.
[35] Liu, J., Wang, Z., Yang, Z., and Zhang, T., An adaptive predictive control algorithm for comprehensive dendritic canal systems, J. Irrig. Drain. Eng., 149 (2023), 04022046.
[36] Liu, Y., Guo, Y., and Sun, J., A deterministic-statistical approach to reconstruct moving sources using sparse partial data, Inverse Problems, 37 (2021), 065005. · Zbl 1466.35369
[37] Lohrmann, A., Cabrera, R., Gelfenbaum, G., and Haines, J., Direct measurements of Reynolds stress with an acoustic Doppler velocimeter, in Proceedings of the IEEE Fifth Working Conference on Current Measurement, , IEEE, Piscataway, NJ, 1995, pp. 205-210.
[38] Lohrmann, A., Cabrera, R., and Kraus, N. C., Acoustic-Doppler velocimeter (ADV) for laboratory use, in Fundamentals and Advancements in Hydraulic Measurements and Experimentation, ASCE, New York, 1994, pp. 351-365.
[39] Mittal, G. and Giri, A. K., Iteratively regularized Landweber iteration method: Convergence analysis via Hölder stability, Appl. Math. Comput., 392 (2021), 125744. · Zbl 1474.65158
[40] Mittal, G. and Giri, A. K., Convergence rates for iteratively regularized Gauss-Newton method subject to stability constraints, J. Comput. Appl. Math., 400 (2022), 113744. · Zbl 1503.65121
[41] Nakagawa, H. and Nezu, I., Prediction of the contributions to the Reynolds stress from bursting events in open-channel flows, J. Fluid Mech., 80 (1977), pp. 99-128. · Zbl 0358.76042
[42] Nakaguchi, E., Inui, H., and Ohnaka, K., An algebraic reconstruction of a moving point source for a scalar wave equation, Inverse Problems, 28 (2012), 065018. · Zbl 1245.35150
[43] Rennie, C. D. and Millar, R. G., Deconvolution technique to separate signal from noise in gravel bedload velocity data, J. Hydraul. Eng., 133 (2007), pp. 845-856.
[44] Sellar, B., Harding, S., and Richmond, M., High-resolution velocimetry in energetic tidal currents using a convergent-beam acoustic Doppler profiler, Meas. Sci. Technol., 26 (2015), 085801.
[45] Shademani, A., Zhang, H., Jackson, J. K., and Chiao, M., Active regulation of on-demand drug delivery by magnetically triggerable microspouters, Adv. Funct. Mater., 27 (2017), 1604558.
[46] Stacey, M. T., Monismith, S. G., and Burau, J. R., Observations of turbulence in a partially stratified estuary, J. Phys. Oceanogr., 29 (1999), pp. 1950-1970.
[47] Stone, M. C. and Hotchkiss, R. H., Evaluating velocity measurement techniques in shallow streams, J. Hydraul. Res., 45 (2007), pp. 752-762.
[48] Taylor, G. I. and Green, A. E., Mechanism of the production of small eddies from large ones, Proc. A, 158 (1937), pp. 499-521. · JFM 63.1358.03
[49] Termaat, K. P., Fluid flow measurements inside the reactor vessel of the 50 MWe Dodewaard nuclear power plant by cross-correlation of thermocouple signals, J. Phys. E, 3 (1970), pp. 589-593.
[50] Tokyay, T., Constantinescu, G., and Gonzalez-Castro, J. A., Investigation of two elemental error sources in boat-mounted acoustic Doppler current profiler measurements by large eddy simulations, J. Hydraul. Eng., 135 (2009), pp. 875-887.
[51] Tong, L. L., Hou, L. Q., and Cao, X. W., Analysis of the flow distribution and mixing characteristics in the reactor pressure vessel, Nucl. Eng. Technol., 53 (2021), pp. 93-102.
[52] Treeby, B. E. and Cox, B. T., K-wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields, J. Biomed. Opt., 15 (2010), 021314.
[53] Tudosie, A.-N., Aircraft gas-turbine engine’s control based on the fuel injection control, in Aeronautics and Astronautics, IntechOpen, London, 2011, 19534.
[54] Wang, Y., Li, J., and Wang, J., A convergence analysis of an inexact Newton-Landweber iteration method for nonlinear problem, Appl. Anal., 97 (2018), pp. 1106-1116. · Zbl 1398.65357
[55] Whipple, A. C., Luettich, R. A., and Seim, H. E., Measurements of Reynolds stress in a wind-driven lagoonal estuary, Ocean Dyn., 56 (2006), pp. 169-185.
[56] Zangerl, G., Haltmeier, M., Nguyen, L. V., and Nuster, R., Full field inversion in photoacoustic tomography with variable sound speed, Appl. Sci., 9 (2019), 1563.
[57] Zheng, Z., Wang, Z., Zhao, J., and Zheng, H., Constrained model predictive control algorithm for cascaded irrigation canals, J. Irrig. Drain. Eng., 145 (2019), 04019009.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.