×

Biparametric identification for a free boundary of ductal carcinoma in situ. (English) Zbl 1522.35516

Summary: In this paper we investigate an inverse problem of two parameter identification with free boundary conditions modeling ductal carcinoma in situ (DCIS). Based on the characteristics of the DCIS model, we present an inverse problem of ductal carcinoma in situ (IPDCIS) under the conditions of incisional biopsy measurements at two different moments. Compared with the data in other literatures, this kind of measurements are more feasible and easy to obtain. Moreover, the uniqueness solution to the IPDCIS is proved. The IPDCIS of simultaneously determining unknown parameter and boundary function is transformed into a optimization problem, which can be solved by particle swarm optimization (PSO) method. The numerical simulation results are included to demonstrate the validity of the method and accuracy of the formulation of the IPDCIS. According to the information of clinical incision biopsy, the mathematical model of incision diagnosis of tumor growth pattern is established, and the unknown coefficients in the model are determined based on the proposed mathematical model.

MSC:

35Q92 PDEs in connection with biology, chemistry and other natural sciences
92C37 Cell biology
92C32 Pathology, pathophysiology
92C50 Medical applications (general)
35R30 Inverse problems for PDEs
35R35 Free boundary problems for PDEs
35R60 PDEs with randomness, stochastic partial differential equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
35K05 Heat equation
65K10 Numerical optimization and variational techniques
90C56 Derivative-free methods and methods using generalized derivatives
65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs
65M30 Numerical methods for ill-posed problems for initial value and initial-boundary value problems involving PDEs
65F22 Ill-posedness and regularization problems in numerical linear algebra
65J20 Numerical solutions of ill-posed problems in abstract spaces; regularization
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Byrne, H.; Chaplain, M., Growth of nonnecrotic tumors in the presence and absence of inhibitors, Math Biosci, 130, 151-181 (1995) · Zbl 0836.92011
[2] Byrne, H.; Chaplain, M., Growth of necrotic tumors in the presence and absence of inhibitors, Math Biosci, 135, 187-216 (1996) · Zbl 0856.92010
[3] Xu, Y., A free boundary problem model of ductal carcinoma in situ, Discrete Contin Dyn Syst Ser B, 4, 1, 337-348 (2004) · Zbl 1050.35158
[4] Friedman, A.; Reitich, F., Analysis of a mathematical model for the growth of tumours, J Math Biol, 38, 262-284 (1999) · Zbl 0944.92018
[5] Friedman, A.; Reitich, F., Symmetry-breaking bifurcation of analytic solutions to free boundary problems: an application to a model of tumor growth, Trans Amer Math Soc, 353, 1587-1634 (2000) · Zbl 0983.35019
[6] Ward, JP; King, JR., Mathematical modelling of avasculartumour growth, J Math Appl Med Biol, 14, 39-69 (1997) · Zbl 0866.92011
[7] Ward, JP; King, JR., Mathematical modelling of avasculartumour growth II: modelling growth saturation, IMA J Math Appl Med Biol, 16, 171-211 (1999) · Zbl 0943.92019
[8] Xu, Y. A mathematical model of ductal carcinoma in situ and its characteristic stationary solutions. In: Begehr H, Gilbert RP, Muldoon ME, Wong MW, editors. Advances in analysis. Singapore: World Scientific; 2005. · Zbl 1087.92045
[9] Xu, Y., A free boundary problem of diffusion equation with integral condition, Appl Anal, 85, 9, 1143-1152 (2006) · Zbl 1122.35157
[10] Xu, Y., A free boundary problem of parabolic complex equation, Complex Var Elliptic Equ, 51, 8-11, 945-951 (2006) · Zbl 1122.35158
[11] Xu, Y. An inverse problem for the free boundary model of ductal carcinoma in situ. In: Begehr H, Nicolosi F, editors. More progresses in analysis. Singapore: World Science Publisher; 2008. p. 1429-1438. · Zbl 1187.35287
[12] Franks, SJ; Byrne, HM; Mudhar, HS, Mathematical modelling of comedo ductal carcinoma in situ of the breast, Math Med Biol, 20, 277-308 (2003) · Zbl 1039.92021
[13] Xu, Y.; Gilbert, R., Some inverse problems raised from a mathematical model of ductal carcinoma in situ, Math Comput Model, 49, 814-828 (2009) · Zbl 1165.65388
[14] Li, H.; Zhou, J., Direct and inverse problem for the parabolic equation with initial value and time-dependent boundaries, Appl Anal, 95, 6, 1307-1326 (2016) · Zbl 1338.35202
[15] Li, H.; Xu, Y.; Zhou, J., A free boundary problem arising from DCIS mathematical model, Math Methods Appl Sci, 40, 3566-3579 (2017) · Zbl 1370.35155
[16] Zhou, J.; Xu, Y.; Li, H., Another way of solving a free boundary problem related to DCIS model, Appl Anal, 100, 15, 3244-3258 (2021) · Zbl 1477.35320 · doi:10.1080/00036811.2020.1715369
[17] Ivanchov, MI., Inverse problem with free boundary for heat equation, Ukr Math J, 55, 1086-1098 (2003) · Zbl 1142.35625
[18] Xu, D., Mathematical modeling of heat and moisture transfer within textiles and corresponding inverse problems of textile material design (2014), Beijing: Science Press, Beijing
[19] Liu, K.; Xu, Y.; Xu, D., Numerical algorithms for a free boundary problem model of DCIS and a related inverse problem, Appl Anal, 99, 1181-1194 (2020) · Zbl 1442.65231 · doi:10.1080/00036811.2018.1524139
[20] Hussein, MS; Lesnic, D.; Ivanchov, MI, Multiple time-dependent coefficient identification thermal problems with a free boundary, Appl Numer Math, 99, 24-50 (2016) · Zbl 1329.65212
[21] Peng, FX., Pathological diagnosis of breast tumor by frozen section and paraffin section comparative study on accuracy, China Prac Med, 15, 5, 195-196 (2020)
[22] Fu, Y.; Yu, XL., Intra-operative frozen section diagnosis of breast lesions:a retrospective analysis of 13243 Chinese patients, Chin Medi J, 35, 2, 258-263 (2007)
[23] Taylor, M., Partial differential equations III, nonlinear equations (1996), New York: Springer, New York · Zbl 0869.35004
[24] Evans, L., Partial differential equations (1998), Providence: American Mathematical Society, Providence · Zbl 0902.35002
[25] Zorich Vladimir, A., Mathematical analysis II (2016), New York: Springer, New York · Zbl 1331.00005
[26] Wang, Y., The computational methods of inverse problems and their applications (2007), Beijing: Higher Education Press, Beijing
[27] Wang, Z.; Qiu, S.; Ruan, Z., A regularized optimization method for identifying the space-dependent source and the initial value simultaneously in a parabolic equation, Comput Math Appl, 6, 1345-1357 (2014) · Zbl 1350.65107
[28] Xu, D.; Cheng, J.; Zhou, X., A model of heat and moisture transfer through the parallel pore textiles, J Fiber Bio Inf, 3, 4, 250-255 (2011) · doi:10.3993/jfbi03201110
[29] Xu, D.; Cheng, J.; Chen, Y., An inverse problem of thickness designed for textile material under low temperature, J Phys: Conference Ser, 290 (2011)
[30] Xu, D., Inverse problems of textile material design based on clothing heat-moisture comfort, Appl Anal, 93, 2426-2439 (2014) · Zbl 1304.35774
[31] Xu, D.; Ge, M., Thickness determination in textile material design: dynamic modeling and numerial algorithms, Inverse Prob, 28 (2012) · Zbl 1236.80011
[32] Yu, Y.; Xu, D.; Hon, YC., Numerical algorithms for a sideways parabolic problem with variable coefficients, Appl Anal, 95, 4, 874-901 (2016) · Zbl 1338.35503 · doi:10.1080/00036811.2015.1038995
[33] Liu, J., Regularization methods and applications for ill-posed prob (2005), Beijing: Science Press, Beijing
[34] Liu, K., Fast imaging of sources and scatterers in a stratified ocean waveguide, SIAM J Imaging Sci, 14, 224-245 (2021) · Zbl 1541.65138
[35] Ammari, H.; Chow, Y.; Liu, K., Optimal mesh size for inverse medium scattering problems, SIAM J Numer Anal, 58, 733-756 (2020) · Zbl 1431.65249
[36] Liu, K., Near-field imaging of inhomogeneities in a stratified ocean waveguide, J Comput Phys, 398 (2019) · Zbl 1453.65394
[37] Cheng, J.; Yamamoto, M., one new strategy for a priori choice of regularizing parameters in Tikhonov’s regularization, Inverse Prob, 16, L31-L38 (2000) · Zbl 0957.65052
[38] Kennedy, J, Eberhart, R. Particle swarm optimization. In: 1995 Proceedings of the IEEE International Conference on Neural Networks, Perth. Vol. 4. 1995. p. 1942-1948.
[39] Clerc, M., Particle swarm optimization (2006), London: Recherche, London · Zbl 1130.90059
[40] Lazinica, A., Particle swarm optimization (2009), Kirchengasse: InTech, Kirchengasse
[41] Parsopoulos, K.; Vrahatis, M., Particle swarm optimization and intelligence: advances and applications (2010), Chicago: Information Science Reference, Chicago
[42] Xu, Y.; Xu, D.; Zhang, L., A new inverse problem for the determination of textile fabrics thickness, Inverse Probl Sci Eng, 23, 4, 635-650 (2015) · Zbl 1326.80012 · doi:10.1080/17415977.2014.933827
[43] Robbins, H.; Monro, S., A stochastic approximation method, Ann Math Stat, 22, 400-407 (1951) · Zbl 0054.05901
[44] Jin, B.; Lu, X., On the regularizing property of stochastic gradient descent, Inverse Prob, 35, 1 (2018)
[45] Dieuleveut, A.; Bach, F., Nonparametric stochastic approximation with large step-sizes, Ann Statist, 44, 4, 1363-1399 (2016) · Zbl 1346.60041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.