×

Method of continual addition theorems and integral relations between the Coulomb functions and the Appell function \(F_1\). (English. Russian original) Zbl 1522.35487

Comput. Math. Math. Phys. 62, No. 9, 1486-1495 (2022); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 9, 1522-1531 (2022).
Summary: The paper considers a function \(A\) introduced by the authors, which depends on one complex variable, two real variables, and one more argument, which defines a trivial or proper subgroup of a three-dimensional proper Lorentz group, which, therefore, is a real number or a pair of real numbers. In this case, the first three arguments define representation spaces and basis functions in these spaces. It is shown that its particular values can be expressed via the Coulomb wave functions or Appell’s hypergeometric function \({{F}_1}\). The resulting formula for the transformation of the function \(A\) is used to derive a continual addition theorem for this function and calculate the one-dimensional Fourier-Mellin-type integral transforms of the product of two Coulomb functions; its result is expressed via the function \({{F}_1}\).

MSC:

35Q60 PDEs in connection with optics and electromagnetic theory
35Q40 PDEs in connection with quantum mechanics
33C65 Appell, Horn and Lauricella functions
78A35 Motion of charged particles
78A10 Physical optics
81U05 \(2\)-body potential quantum scattering theory
35A22 Transform methods (e.g., integral transforms) applied to PDEs
Full Text: DOI

References:

[1] Klimyk, A. U.; Kachurik, I. I., Computational Methods in the Theory of Group Representations (1986), Kiev: Vishcha Shkola, Kiev · Zbl 0649.22011
[2] Miller, W., Symmetry and Separation of Variables (1977), Reading, Mass.: Addison-Wesley, Reading, Mass. · Zbl 0368.35002
[3] I. M. Gelfand and G. E. Shilov, Generalized Functions (Fizmatgiz, Moscow, 1959; Academic, New York, 1967). · Zbl 0091.11102
[4] I. A. Shilin and J. Choi, “Lie algebras and special functions related to the isotropic cone,” in Advances in Science and Engineering:Modern Mathematics and Applications [in press].
[5] Shilin, I. A., Double SO(2, 1)-integrals and formulas for Whittaker functions, Russ. Math., 56, 47-56 (2012) · Zbl 1264.33009 · doi:10.3103/S1066369X12050064
[6] Verdiev, I. A., Invariants of Lorentz Group Representations and Their Applications in the Dual Model of Particle Physics (1978), Baku: Akad. Nauk Az. SSR, Baku
[7] Shilin, I. A.; Choi, J., Certain relations between Bessel and Whittaker functions related to some diagonal and block-diagonal 3 × 3-matrices, J. Nonlinear Sci. Appl., 10, 560-574 (2017) · Zbl 1412.33011 · doi:10.22436/jnsa.010.02.20
[8] D. Gaspard, “Connection formulas between Coulomb wave functions,” J. Math. Phys. 59, 112104 (2018). · Zbl 1404.81093
[9] Chattarji, D., The Coulomb wave function from the viewpoint of the Lie algebra, Il Nuova Cimento, 48, 524-530 (1967) · Zbl 0146.09004 · doi:10.1007/BF02818022
[10] Shilin, I. A.; Choi, J.; Lee, J. W., Some integrals involving Coulomb functions associated with the three-dimensional proper Lorentz group, AIMS Math., 5, 5664-5682 (2020) · Zbl 1484.33010 · doi:10.3934/math.2020362
[11] Yu. A. Brychkov, O. I. Marichev, and A. P. Prudnikov, Integrals and Series, Vol. 1: Elementary Functions (Nauka, Moscow, 1981; Gordon and Breach, New York, 1986). · Zbl 0511.00044
[12] Shilin, I. A.; Choi, J., Some formulas for ordinary and hyper Bessel-Clifford functions related to the proper Lorentz group, J. Math. Sci., 259, 518-527 (2021) · Zbl 1489.33004 · doi:10.1007/s10958-021-05644-4
[13] Bezrodnykh, S. I., Analytic continuation of Lauricella’s functions \(F_A^{{(N)}}, F_B^{{(N)}}\), and \(F_D^{{(N)}}\), Integral Transforms Spec. Funct., 31, 921-940 (2020) · Zbl 1466.33008 · doi:10.1080/10652469.2020.1762081
[14] Bezrodnykh, S. I., Analytic continuation of the Lauricella function \(F_D^{{(N)}}\), Int. Transforms. Spec. Funct., 29, 21-42 (2018) · Zbl 1384.33026 · doi:10.1080/10652469.2017.1402017
[15] Miller, W., Lie theory and the Lauricella functions F_D, J. Math. Phys., 13, 1393-1399 (1972) · Zbl 0243.33009 · doi:10.1063/1.1666152
[16] Miller, W., Lie theory and the Appell functions F_1, SIAM J. Math. Anal., 4, 638-655 (1973) · Zbl 0235.33017 · doi:10.1137/0504055
[17] N. Ya. Vilenkin, “Hypergeometric functions of several variables, and degenerate representations of the group SL(n, ℝ),” Izv. Vyssh. Uchebn. Zaved. Mat., No. 4, 50-55 (1970). · Zbl 0208.08203
[18] Ja, N., Classical and Quantum Groups and Special Functions (1992), Dordrecht: Kluwer, Dordrecht · Zbl 0778.22001
[19] Kalnins, E. G.; Manocha, H. L.; Miller, W., The Lie theory of two-variable hypergeometric functions, Stud. Appl. Math., 62, 143-173 (1980) · Zbl 0452.33019 · doi:10.1002/sapm1980622143
[20] Kniehl, B. A.; Tarasov, O. V., Finding new relationships between hypergeometric functions by evaluating Feynman integrals, Nucl. Phys. B, 854, 841-852 (2012) · Zbl 1229.81100 · doi:10.1016/j.nuclphysb.2011.09.015
[21] Lee, J.-C.; Yang, Y., The Appell function F_1 and Regge string scattering amplitudes, Phys. Lett. B, 739, 370-374 (2014) · Zbl 1306.81256 · doi:10.1016/j.physletb.2014.11.017
[22] M. A. Shpot, “A massive Feynman integral and some reduction relations for Appell functions,” J. Math. Phys. 48 (12), 123512 (2007). · Zbl 1153.81433
[23] Carlson, B. C., Some series and bounds for incomplete elliptic integrals, J. Math. Phys., 40, 125-134 (1961) · Zbl 0113.28103 · doi:10.1002/sapm1961401125
[24] Scarpello, G. M.; Ritelli, D., π and the hypergeometric functions of complex argument, J. Number Theory, 131, 1887-1900 (2011) · Zbl 1253.33001 · doi:10.1016/j.jnt.2011.04.005
[25] I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products (Nauka, Moscow, 1963; Academic, New York, 1980).
[26] Yu. A. Brychkov, O. I. Marichev, and A. P. Prudnikov, Integrals and Series, Vol. 3: More Special Functions (Nauka, Moscow, 1986; Gordon and Breach, New York, 1990). · Zbl 0733.00004
[27] Chibisov, M. I.; Ermolaev, A. M.; Sherkani, M.; Bruiar, F., Sums of products of Coulomb wave function over degenerate states, J. Exp. Theor. Phys., 90, 276-280 (2000) · doi:10.1134/1.559100
[28] Ancarani, L. U.; Hervieux, P. A., Analytical formulas for Coulomb integrals involved in scattering problems, Phys. Rev. A., 58, 336 (1998) · doi:10.1103/PhysRevA.58.336
[29] Arnoldus, A. G.; George, T. F., Analytical evaluation of elastic Coulomb integrals, J. Math. Phys., 33, 578-583 (1992) · doi:10.1063/1.529792
[30] Nesbet, R. K., Analytical evaluation of integrals over Coulomb wave functions, Comput. Phys. Commun., 52, 29-33 (1988) · doi:10.1016/0010-4655(88)90168-3
[31] Sil, N. C.; Crees, M. A.; Seaton, M. J., Integrals involving products of Coulomb functions and inverse powers of the radial coordinate, J. Phys. B: At. Mol. Phys., 17, 1-21 (1984) · doi:10.1088/0022-3700/17/1/008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.