×

The Dirichlet problem for the \(k\)-Hessian equation on a complex manifold. (English) Zbl 1522.35004

For \(1\le k\le n\) integer number, let \(\sigma_k\) be the \(k\)-th elementary symmetric function \[ \sigma_k(\lambda)=\sum_{1\le i_1<i_{2}<\cdots< i_k\le n}\lambda_{i_1}\lambda_{i_2}\cdots\lambda_{i_{k}}, \;\;\text{for any}\;\; \lambda=(\lambda_1,\cdots,\lambda_n)\in\mathbb{R}^n. \] Let \(\Gamma_k\) be the convex cone \[ \Gamma_k=\left\{\lambda=(\lambda_1,\cdots,\lambda_n)\in\mathbb{R}^n\; :\; \sigma_1(\lambda)>0,\dots, \sigma_k(\lambda)>0 \right\}. \] Let \((X,\alpha)\) be a compact complex manifold with Hermitian metric \(\alpha\) and non-empty boundary \(\partial X\) written in local coordinates as \[ \alpha=\sqrt{-1}\alpha_{\overline{k}j}dz^{j}\wedge d\overline{z}^{k} \] and set \(\alpha^{i\overline{k}}\) the inverse of \(\alpha_{\overline{k}j}\). Now, let \(\chi \in \Omega^{1,1}(X, \mathbb{R})\) be a differential form of type \((1,1)\), written in local coordinates as \[ \chi=\sqrt{-1}\chi_{\overline{k}j}dz^{j}\wedge d\overline{z}^{k}. \] We say \(\chi\in \Gamma_k(X, \alpha)\) if the vector of eigenvalues of the Hermitian endomorphism \(\alpha^{i\overline{k}}\chi_{\overline{k}j}\) lies in the \(\Gamma_k\) cone at each point. The authors prove that given \(\chi \in \Omega^{1,1}(X, \mathbb{R})\) differential form of type \((1,1)\), \(\psi\in C^{\infty}(X)\) satisfying \(\psi\ge c>0\), \(\varphi\in C^{\infty}(\partial X,\mathbb{R})\) if there exists a subsolution \(\underline{u}\in C^{\infty}(\overline{X}, \mathbb{R})\) of the equation \[ \sigma_k(\underline{\lambda})\ge \psi, \quad \underline{u}{|_{\partial X}}=\varphi, \] where \(\underline{\lambda}\in \Gamma_k\) are the eigenvalues of \(\chi+\sqrt{-1}\partial\overline{\partial}\underline{u}\) with respect to \(\alpha\), then there exists a unique solution \(u\in C^{\infty}(\overline{X},\mathbb{R})\) of the equation \[ \sigma_k(\lambda)= \psi, \quad u{|_{\partial X}}=\varphi, \] where \(\lambda\in \Gamma_k\) are the eigenvalues of \(\chi+\sqrt{-1}\partial\overline{\partial}u\) with respect to \(\alpha\).

MSC:

35A01 Existence problems for PDEs: global existence, local existence, non-existence
35B45 A priori estimates in context of PDEs
35J25 Boundary value problems for second-order elliptic equations
35J60 Nonlinear elliptic equations
32W20 Complex Monge-Ampère operators

References:

[1] J. M. Ball, Differentiability properties of symmetric and isotropic functions, Duke Math. J. 51 (1984), no. 3, 699-728. · Zbl 0566.73001
[2] E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), no. 1-2, 1-40. · Zbl 0547.32012
[3] Z. Błocki, Weak solutions to the complex Hessian equation, Ann. Inst. Fourier (Grenoble) 55 (2005), no. 5, 1735-1756. · Zbl 1081.32023
[4] S. Boucksom, Monge-Ampère equations on complex manifolds with boundary, Complex Monge-Ampère Equations and Geodesics in the Space of Kähler Metrics, Lecture Notes in Math., vol. 2038, Springer-Verlag, Heidelberg, 2012, pp. 257-282. · Zbl 1231.32025
[5] L. Caffarelli, J. J. Kohn, L. Nirenberg, and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. II. Complex Monge-Ampère, and uniformly elliptic, equations, Comm. Pure Appl. Math. 38 (1985), no. 2, 209-252. · Zbl 0598.35048
[6] L. Caffarelli, L. Nirenberg, and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equa-tions. I. Monge-Ampère equation, Comm. Pure Appl. Math. 37 (1984), no. 3, 369-402. · Zbl 0598.35047
[7] , The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian, Acta Math. 155 (1985), no. 3-4, 261-301. · Zbl 0654.35031
[8] L. A. Caffarelli, Interior a priori estimates for solutions of fully nonlinear equations, Ann. of Math. (2) 130 (1989), no. 1, 189-213. · Zbl 0692.35017
[9] Y.-Z. Chen and L.-C. Wu, Second Order Elliptic Equations and Elliptic Systems. Translated from the 1991 Chinese original by Bei Hu, Transl. Math. Monogr., vol. 174, Amer. Math. Soc., Providence, RI, 1998. · Zbl 0902.35003
[10] S. Y. Cheng and S. T. Yau, On the regularity of the Monge-Ampère equation det(∂ 2 u/∂x i ∂sx j ) = F (x, u), Comm. Pure Appl. Math. 30 (1977), no. 1, 41-68. · Zbl 0347.35019
[11] , On the existence of a complete Kähler metric on noncompact complex manifolds and the regularity of Fefferman’s equation, Comm. Pure Appl. Math. 33 (1980), no. 4, 507-544. · Zbl 0506.53031
[12] Pascal Cherrier and Abdellah Hanani, Le problème de Dirichlet pour leséquations de Monge-Ampère en métrique hermitienne, Bull. Sci. Math. 123 (1999), no. 7, 577-597. · Zbl 0939.35069
[13] J. Chu, L. Huang, and X. Zhu, The Fu-Yau equation in higher dimensions, Peking Math. J. 2 (2019), no. 1, 71-97. · Zbl 1416.58010
[14] T. C. Collins, A. Jacob, and S.-T. Yau, (1, 1) forms with specified Lagrangian phase: a priori estimates and algebraic obstructions, Camb. J. Math. 8 (2020), no. 2, 407-452. · Zbl 1442.14124
[15] T. C. Collins, S. Picard, and X. Wu, Concavity of the Lagrangian phase operator and applications, Calc. Var. Partial Differential Equations 56 (2017), no. 4, Paper No. 89. · Zbl 1378.35116
[16] T. C. Collins and S.-T. Yau, Moment maps, nonlinear PDE and stability in mirror symmetry, I: geodesics, Ann. PDE 7 (2021), no. 1, Paper No. 11. · Zbl 1469.58007
[17] J.-P. Demailly, Complex Analytic and Differential Geometry, Université de Grenoble I, 1997.
[18] S. Dinew and S. Kołodziej, A priori estimates for complex Hessian equations, Anal. PDE 7 (2014), no. 1, 227-244. · Zbl 1297.32020
[19] , Liouville and Calabi-Yau type theorems for complex Hessian equations, Amer. J. Math. 139 (2017), no. 2, 403-415. · Zbl 1372.32027
[20] S. Dinew and C. H. Lu, Mixed Hessian inequalities and uniqueness in the class E(X, ω, m), Math. Z. 279 (2015), no. 3-4, 753-766. · Zbl 1318.53078
[21] S. Dinew, S. Pliś, and X. Zhang, Regularity of degenerate Hessian equations, Calc. Var. Partial Differential Equations 58 (2019), no. 4, Paper No. 138. · Zbl 1421.32025
[22] W. Dong, Second order estimates for a class of complex Hessian equations on Hermitian manifolds, J. Funct. Anal. 281 (2021), no. 7, Paper No. 109121. · Zbl 1468.35045
[23] L. C. Evans, Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math. 35 (1982), no. 3, 333-363. · Zbl 0469.35022
[24] A. Fino, G. Grantcharov, and L. Vezzoni, Solutions to the Hull-Strominger system with torus symmetry, Comm. Math. Phys. 388 (2021), no. 2, 947-967. · Zbl 1485.53042
[25] J.-X. Fu and S.-T. Yau, The theory of superstring with flux on non-Kähler manifolds and the complex Monge-Ampère equation, J. Differential Geom. 78 (2008), no. 3, 369-428. · Zbl 1141.53036
[26] L. Gȧrding, An inequality for hyperbolic polynomials, J. Math. Mech. 8 (1959), 957-965. · Zbl 0090.01603
[27] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order. Reprint of the 1998 edition, Classics Math., Springer-Verlag, Berlin, 2001. · Zbl 1042.35002
[28] D. Gu and N. C. Nguyen, The Dirichlet problem for a complex Hessian equation on compact Hermitian manifolds with boundary, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 18 (2018), no. 4, 1189-1248. · Zbl 1409.53060
[29] B. Guan, The Dirichlet problem for a class of fully nonlinear elliptic equations, Comm. Partial Differential Equations 19 (1994), no. 3-4, 399-416. · Zbl 0796.35045
[30] , The Dirichlet problem for complex Monge-Ampère equations and regularity of the pluri-complex Green function, Comm. Anal. Geom. 6 (1998), no. 4, 687-703. · Zbl 0923.31005
[31] , Second-order estimates and regularity for fully nonlinear elliptic equations on Riemannian manifolds, Duke Math. J. 163 (2014), no. 8, 1491-1524. · Zbl 1296.58012
[32] B. Guan and Q. Li, Complex Monge-Ampère equations and totally real submanifolds, Adv. Math. 225 (2010), no. 3, 1185-1223. · Zbl 1206.58007
[33] , The Dirichlet problem for a complex Monge-Ampère type equation on Hermitian manifolds, Adv. Math. 246 (2013), 351-367. · Zbl 1286.58014
[34] B. Guan and J. Spruck, Boundary-value problems on S n for surfaces of constant Gauss curvature, Ann. of Math. (2) 138 (1993), no. 3, 601-624. · Zbl 0840.53046
[35] , Hypersurfaces of constant curvature in hyperbolic space. II, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 3, 797-817. · Zbl 1197.53066
[36] B. Guan and W. Sun, On a class of fully nonlinear elliptic equations on Hermitian manifolds, Calc. Var. Partial Differential Equations 54 (2015), no. 1, 901-916. · Zbl 1326.32054
[37] P. Guan, The extremal function associated to intrinsic norms, Ann. of Math. (2) 156 (2002), no. 1, 197-211. · Zbl 1036.32026
[38] P. Guan and X. Zhang, Regularity of the geodesic equation in the space of Sasakian metrics, Adv. Math. 230 (2012), no. 1, 321-371. · Zbl 1245.58016
[39] F. R. Harvey and H. B. Lawson Jr., Dirichlet duality and the nonlinear Dirichlet problem on Riemannian manifolds, J. Differential Geom. 88 (2011), no. 3, 395-482. · Zbl 1235.53042
[40] A. Horn, Doubly stochastic matrices and the diagonal of a rotation matrix, Amer. J. Math. 76 (1954), 620-630. · Zbl 0055.24601
[41] Z. Hou, Complex Hessian equation on Kähler manifold, Int. Math. Res. Not. IMRN 2009 (2009), no. 16, 3098-3111. · Zbl 1177.32013
[42] Zuoliang Hou, Xi-Nan Ma, and Damin Wu, A second order estimate for complex Hessian equations on a compact Kähler manifold, Math. Res. Lett. 17 (2010), no. 3, 547-561. · Zbl 1225.32026
[43] N. M. Ivochkina, The integral method of barrier functions and the Dirichlet problem for equations with operators of the Monge-Ampère type, Mat. Sb. (N.S.) 112(154) (1980), no. 2(6), 193-206. · Zbl 0447.35015
[44] , Classical solvability of the Dirichlet problem for the Monge-Ampère equation, Zap. Nauchn. · Zbl 0522.35028
[45] Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 131 (1983), 72-79.
[46] A. Jbilou,Équations hessiennes complexes sur des variétés kählériennes compactes, C. R. Math. Acad. Sci. Paris 348 (2010), no. 1-2, 41-46. · Zbl 1189.53071
[47] V. N. Kokarev, Mixed volume forms and a complex equation of Monge-Ampère type on Kähler manifolds of positive curvature, Izv. Ross. Akad. Nauk Ser. Mat. 74 (2010), no. 3, 65-78. · Zbl 1200.32015
[48] S. Kołodziej and N. C. Nguyen, Weak solutions of complex Hessian equations on compact Hermitian manifolds, Compos. Math. 152 (2016), no. 11, 2221-2248. · Zbl 1381.53136
[49] N. V. Krylov, Boundedly inhomogeneous elliptic and parabolic equations, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 3, 487-523. · Zbl 0511.35002
[50] , Boundedly inhomogeneous elliptic and parabolic equations in a domain, Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), no. 1, 75-108.
[51] , Degenerate nonlinear elliptic equations, Mat. Sb. (N.S.) 120(162) (1983), no. 3, 311-330. · Zbl 0525.35038
[52] C. Li and T. Zheng, The Dirichlet problem on almost Hermitian manifolds, J. Geom. Anal. 31 (2021), no. 6, 6452-6480. · Zbl 1472.35131
[53] S.-Y. Li, On the Dirichlet problems for symmetric function equations of the eigenvalues of the complex Hessian, Asian J. Math. 8 (2004), no. 1, 87-106. · Zbl 1068.32024
[54] Chinh H. Lu and Van-Dong Nguyen, Degenerate complex Hessian equations on compact Kähler manifolds, Indiana Univ. Math. J. 64 (2015), no. 6, 1721-1745. · Zbl 1341.32033
[55] H. C. Lu, Solutions to degenerate complex Hessian equations, J. Math. Pures Appl. (9) 100 (2013), no. 6, 785-805. · Zbl 1288.53072
[56] M. Marcus, An eigenvalue inequality for the product of normal matrices, Amer. Math. Monthly 63 (1956), 173-174. · Zbl 0070.01304
[57] N. C. Nguyen, Subsolution theorem for the complex Hessian equation, Univ. Iagel. Acta Math. 2012 (2013), no. 50, 69-88. · Zbl 1295.32043
[58] D. Phong, S. Picard, and X. Zhang, A second order estimate for general complex Hessian equations, Anal. PDE 9 (2016), no. 7, 1693-1709. · Zbl 1353.32024
[59] D. H. Phong, S. Picard, and X. Zhang, The Fu-Yau equation with negative slope parameter, Invent. Math. 209 (2017), no. 2, 541-576. · Zbl 1378.58017
[60] , The anomaly flow and the Fu-Yau equation, Ann. PDE 4 (2018), no. 2, Paper No. 13. · Zbl 1410.81030
[61] , New curvature flows in complex geometry, Surveys in Differential Geometry 2017. Celebrat-ing the 50th Anniversary of the Journal of Differential Geometry, Surv. Differ. Geom., vol. 22, Int. Press, Somerville, MA, 2018, pp. 331-364. · Zbl 1408.32027
[62] , Fu-Yau Hessian equations, J. Differential Geom. 118 (2021), no. 1, 147-187. · Zbl 1473.58015
[63] D. H. Phong, J. Song, and J. Sturm, Complex Monge-Ampère equations, Surveys in Differential Geometry. Vol. XVII, Surv. Differ. Geom., vol. 17, Int. Press, Boston, MA, 2012, pp. 327-410. · Zbl 1382.32023
[64] D. H. Phong and J. Sturm, The Dirichlet problem for degenerate complex Monge-Ampere equations, Comm. Anal. Geom. 18 (2010), no. 1, 145-170. · Zbl 1222.32044
[65] D. H. Phong and D. T. Tô, Fully non-linear parabolic equations on compact Hermitian manifolds, Ann. Sci.Éc. Norm. Supér. (4) 54 (2021), no. 3, 793-829. · Zbl 07452925
[66] L. Silvestre and B. Sirakov, Boundary regularity for viscosity solutions of fully nonlinear elliptic equations, Comm. Partial Differential Equations 39 (2014), no. 9, 1694-1717. · Zbl 1308.35043
[67] J. Spruck, Geometric aspects of the theory of fully nonlinear elliptic equations, Global Theory of Minimal Surfaces, Clay Math. Proc., vol. 2, Amer. Math. Soc., Providence, RI, 2005, pp. 283-309. · Zbl 1151.53345
[68] G. Székelyhidi, Fully non-linear elliptic equations on compact Hermitian manifolds, J. Differential Geom. 109 (2018), no. 2, 337-378. · Zbl 1409.53062
[69] V. Tosatti, Y. Wang, B. Weinkove, and X. Yang, C 2,α estimates for nonlinear elliptic equations in complex and almost complex geometry, Calc. Var. Partial Differential Equations 54 (2015), no. 1, 431-453. · Zbl 1320.32047
[70] V. Tosatti and B. Weinkove, The complex Monge-Ampère equation on compact Hermitian manifolds, J. Amer. Math. Soc. 23 (2010), no. 4, 1187-1195. · Zbl 1208.53075
[71] , Estimates for the complex Monge-Ampère equation on Hermitian and balanced manifolds, Asian J. Math. 14 (2010), no. 1, 19-40. · Zbl 1208.32034
[72] N. S. Trudinger, On the Dirichlet problem for Hessian equations, Acta Math. 175 (1995), no. 2, 151-164. · Zbl 0887.35061
[73] A. Vinacua, Nonlinear elliptic equations and the complex Hessian, Comm. Partial Differential Equations 13 (1988), no. 12, 1467-1497. · Zbl 0698.35061
[74] Y. Wang, On the C 2,α -regularity of the complex Monge-Ampère equation, Math. Res. Lett. 19 (2012), no. 4, 939-946. · Zbl 1511.35064
[75] S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339-411. · Zbl 0369.53059
[76] R. Yuan, On a class of fully nonlinear elliptic equations containing gradient terms on compact Hermitian manifolds, Canad. J. Math. 70 (2018), no. 4, 943-960. · Zbl 1397.35081
[77] , Regularity of fully non-linear elliptic equations on Kähler cones, Pure Appl. Math. Q. 16 (2020), no. 5, 1585-1617.
[78] , Regularity of fully non-linear elliptic equations on Kähler cones, Pure Appl. Math. Q. 16 (2020), no. 5, 1585-1617.
[79] D. Zhang, Hessian equations on closed Hermitian manifolds, Pacific J. Math. 291 (2017), no. 2, 485-510. · Zbl 1392.35141
[80] X. Zhang, A priori estimates for complex Monge-Ampère equation on Hermitian manifolds, Int. Math. Res. Not. IMRN 2010 (2010), no. 19, 3814-3836. · Zbl 1209.32025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.