×

An improved one-dimensional Hardy inequality. (English. Russian original) Zbl 1522.26015

J. Math. Sci., New York 268, No. 3, 323-342 (2022); translation from Probl. Mat. Anal. 118, 69-86 (2022).
Summary: We prove a one-dimensional Hardy inequality on the halfline with sharp constant, which improves the classical form of this inequality. As a consequence of this new inequality we can rederive known doubly weighted Hardy inequalities. Our motivation comes from the theory of Schrödinger operators and we explain the use of Hardy inequalities in that context.

MSC:

26D15 Inequalities for sums, series and integrals

References:

[1] Opic, B.; Kufner, A., Hardy-Type Inequalities (1990), New York: John Wiley & Sons, New York · Zbl 0698.26007
[2] E. B. Davies, “A review of Hardy inequalities,” In: The Maz’ya anniversary collection, Vol. 2: Rostock Conference on Functional Analysis, Partial Differential Equations and Applications, Rostock, Germany, August 31-September 4, 1988, pp. 55-67, Birkhäuser, Basel (1999). · Zbl 0936.35121
[3] Kufner, A.; Maligranda, L.; Persson, L-E, The prehistory of the Hardy inequality, Am. Math. Mon., 113, 8, 715-732 (2006) · Zbl 1153.01015 · doi:10.1080/00029890.2006.11920356
[4] R. L. Frank, A. Laptev, and T. Weidl, Schrödinger Operators: Eigenvalues and Lieb- Thirring Inequalities. Cambridge University Press, Cambridge [To appear] · Zbl 1536.35001
[5] I. S. Kac and M. G. Krein, “Criteria for the discreteness of the spectrum of a singular string” [in Russian], Izv. Vyssh. Uchebn. Zaved., Mat. No. 2, 136-153 (1958). · Zbl 1469.34111
[6] G. Tomaselli, “A class of inequalities,” Boll. Unione Mat. Ital., IV2, 622-631 (1969). · Zbl 0188.12103
[7] G. Talenti, “Osservazioni sopra una classe di disuguaglianze” [in Italian] Rend. Sem. Mat. Fis. Milano39, 171-185 (1969). · Zbl 0218.26011
[8] Muckenhoupt, B., Hardy’s inequality with weights, Stud. Math., 44, 31-38 (1972) · Zbl 0236.26015 · doi:10.4064/sm-44-1-31-38
[9] V. Maz’ya, Sobolev Spaces. With Applications to Elliptic Partial Differential Equations, Springer, Berlin (2011). · Zbl 1217.46002
[10] M. Sh. Birman, “On the spectrum of singular boundary-value problems” [in Russian], Mat. Sb.55, 125-174 (1961).
[11] Bennett, C.; Sharpley, R., Interpolation of Operators (1988), Boston, MA: Academic Press, Boston, MA · Zbl 0647.46057
[12] Luxemburg, WAJ; Zaanen, AC, Some examples of normed Köthe spaces, Math. Ann., 162, 337-350 (1966) · Zbl 0132.35002 · doi:10.1007/BF01369107
[13] A. C. Zaanen, Integration. Completely Revised Edition of: An Introdcution to the Theory of INtegration, North-Holland, Amsterdam (1967). · Zbl 0175.05002
[14] G. Leoni, A First Course in Sobolev Spaces, Am. Math. Soc., Providence, RI (2017). · Zbl 1382.46001
[15] R. Courant and D. Hilbert, Methods of Mathematical Physics. I, John Wiley & Sons, New York etc. (1989). · Zbl 0729.00007
[16] Glazman, IM, Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators (1965), London: Oldbourne Press, London · Zbl 0143.36505
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.