×

On the geometry of elementary flux modes. (English) Zbl 1521.92055

Summary: Elementary flux modes (EFMs) play a prominent role in the constraint-based analysis of metabolic networks. They correspond to minimal functional units of the metabolic network at steady-state and as such have been studied for almost 30 years. The set of all EFMs in a metabolic network tends to be very large and may have exponential size in the number of reactions. Hence, there is a need to elucidate the structure of this set. Here we focus on geometric properties of EFMs. We analyze the distribution of EFMs in the face lattice of the steady-state flux cone of the metabolic network and show that EFMs in the relative interior of the cone occur only in very special cases. We introduce the concept of degree of an EFM as a measure how elementary it is and study the decomposition of flux vectors and EFMs depending on their degree. Geometric analysis can help to better understand the structure of the set of EFMs, which is important from both the mathematical and the biological viewpoint.

MSC:

92C42 Systems biology, networks
92C40 Biochemistry, molecular biology
52B05 Combinatorial properties of polytopes and polyhedra (number of faces, shortest paths, etc.)

Software:

MEMo; polymake; COBRApy; KEGG

References:

[1] Assarf, B.; Gawrilow, E.; Herr, K., Computing convex hulls and counting integer points with polymake, Math Program Comput, 9, 1, 1-38 (2017) · Zbl 1370.90009 · doi:10.1007/s12532-016-0104-z
[2] Bordbar, A.; Monk, JM; King, ZA, Constraint-based models predict metabolic and associated cellular functions, Nat Rev Genet, 15, 2, 107-120 (2014) · doi:10.1038/nrg3643
[3] Buchner, BA; Zanghellini, J., EFMlrs: a Python package for elementary flux mode enumeration via lexicographic reverse search, BMC Bioinform, 22, 1, 547 (2021) · doi:10.1186/s12859-021-04417-9
[4] Chan, SH; Ji, P., Decomposing flux distributions into elementary flux modes in genome-scale metabolic networks, Bioinformatics, 27, 16, 2256-2262 (2011) · doi:10.1093/bioinformatics/btr367
[5] Clarke B (1980) Stability of complex reaction networks. In: Prigogine I, Rice S (eds) Advances in chemical physics, vol 43. Wiley, pp 1-216. doi:10.1002/9780470142622.ch1
[6] Ebrahim, A.; Lerman, J.; Palsson, B., COBRApy: COnstraints-based Reconstruction and Analysis for Python, BMC Syst Biol, 7, 74 (2013) · doi:10.1186/1752-0509-7-74
[7] Fang, X.; Lloyd, CJ; Palsson, BO, Reconstructing organisms in silico: genome-scale models and their emerging applications, Nat Rev Microbiol, 18, 12, 731-743 (2020) · doi:10.1038/s41579-020-00440-4
[8] Gagneur, J.; Klamt, S., Computation of elementary modes: a unifying framework and the new binary approach, BMC Bioinform, 5, 175 (2004) · doi:10.1186/1471-2105-5-175
[9] Henk M, Richter-Gebert J, Ziegler GM (2017) Basic properties of convex polytopes. In: Toth CD, O’Rourke J, Goodman JE (eds) Handbook of discrete and computational geometry, chap 15, 3rd edn. Chapman and Hall/CRC, Boca Raton. doi:10.1201/9781315119601 · Zbl 0911.52007
[10] Jevremovic, D.; Boley, D., Finding minimal generating set for metabolic network with reversible pathways, BioSystems, 112, 1, 31-36 (2013) · doi:10.1016/j.biosystems.2013.02.003
[11] Jevremovic, D.; Trinh, C.; Srienc, F., On algebraic properties of extreme pathways in metabolic networks, J Comp Biol (2010) · doi:10.1089/cmb.2009.0020
[12] Jungers, RM; Zamorano, F.; Blondel, VD, Fast computation of minimal elementary decompositions of metabolic flux vectors, Automatica, 47, 6, 1255-1259 (2011) · Zbl 1235.93267 · doi:10.1016/j.automatica.2011.01.011
[13] Kanehisa, M.; Goto, S., KEGG: Kyoto Encyclopedia of Genes and Genomes, Nucleic Acids Res, 28, 1, 27-30 (2000) · doi:10.1093/nar/28.1.27
[14] Kelk, SM; Olivier, BG; Stougie, L., Optimal flux spaces of genome-scale stoichiometric models are determined by a few subnetworks, Sci Rep, 2, 580 (2012) · doi:10.1038/srep00580
[15] King, ZA; Lu, J.; Dräger, A., BiGG models: a platform for integrating, standardizing and sharing genome-scale models, Nucleic Acids Res, 44, D1, D515-522 (2016) · doi:10.1093/nar/gkv1049
[16] Larhlimi A, Bockmayr A (2008) On inner and outer descriptions of the steady-state flux cone of a metabolic network. In: Computational Methods in Systems Biology, CMSB 2008, Rostock, Germany. Springer, LNBI 5307, pp 308-327. doi:10.1007/978-3-540-88562-7_22
[17] Larhlimi, A.; Bockmayr, A., A new constraint-based description of the steady-state flux cone of metabolic networks, Discrete Appl Math, 157, 10, 2257-2266 (2009) · Zbl 1182.92036 · doi:10.1016/j.dam.2008.06.039
[18] Lauritzen N (2013) Undergraduate convexity: from Fourier and Motzkin to Kuhn and Tucker. World Scientific Publishing Company, Singapore. doi:10.1142/8527 · Zbl 1270.26001
[19] Maarleveld, TR; Wortel, MT; Olivier, BG, Interplay between constraints, objectives, and optimality for genome-scale stoichiometric models, PLoS Comput Biol, 11, 4, e1004,166 (2015) · doi:10.1371/journal.pcbi.1004166
[20] Oddsdóttir, H.; Hagrot, E.; Chotteau, V., On dynamically generating relevant elementary flux modes in a metabolic network using optimization, J Math Biol, 71, 4, 903-920 (2015) · Zbl 1330.90122 · doi:10.1007/s00285-014-0844-1
[21] Orth, JD; Thiele, I.; Palsson, B., What is flux balance analysis?, Nat Biotechnol, 28, 3, 245-248 (2010) · doi:10.1038/nbt.1614
[22] Papin, J.; Stelling, J.; Price, N., Comparison of network-based pathway analysis methods, Trends Biotechnol, 22, 8, 400-405 (2004) · doi:10.1016/j.tibtech.2004.06.010
[23] Poolman, MG; Venkatesh, KV; Pidcock, MK, A method for the determination of flux in elementary modes, and its application to Lactobacillus rhamnosus, Biotechnol Bioeng, 88, 5, 601-612 (2004) · doi:10.1002/bit.20273
[24] Röhl, A.; Bockmayr, A., Finding MEMo: minimum sets of elementary flux modes, J Math Biol, 79, 5, 1749-1777 (2019) · Zbl 1425.92092 · doi:10.1007/s00285-019-01409-5
[25] Rügen, M.; Bockmayr, A.; Legrand, J., Network reduction in metabolic pathway analysis: elucidation of the key pathways involved in the photoautotrophic growth of the green alga Chlamydomonas reinhardtii, Metab Eng, 14, 4, 458-467 (2012) · doi:10.1016/j.ymben.2012.01.009
[26] Schilling, C.; Letscher, D.; Palsson, B., Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective, J Theor Biol, 203, 3, 229-248 (2000) · doi:10.1006/jtbi.2000.1073
[27] Schneider R (1993) Convex bodies: the Brunn-Minkowski theory. Cambridge University Press, Cambridge. doi:10.1017/CBO9781139003858 · Zbl 0798.52001
[28] Schrijver A (1986) Theory of Linear and Integer Programming. Wiley. doi:10.1002/net.3230200608 · Zbl 0665.90063
[29] Schuster, S.; Hilgetag, C., On elementary flux modes in biochemical systems at steady state, J Biol Syst, 2, 165-182 (1994) · doi:10.1142/S0218339094000131
[30] Schuster, S.; Fell, DA; Dandekar, T., A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks, Nat Biotechnol, 18, 3, 326-332 (2000) · doi:10.1038/73786
[31] Schuster, S.; Hilgetag, C.; Woods, JH, Reaction routes in biochemical reaction systems: algebraic properties, validated calculation procedure and example from nucleotide metabolism, J Math Biol, 45, 153-181 (2002) · Zbl 1012.92016 · doi:10.1007/s002850200143
[32] Schwartz, JM; Kanehisa, M., A quadratic programming approach for decomposing steady-state metabolic flux distributions onto elementary modes, Bioinformatics, 21, Suppl 2, i204-205 (2005) · doi:10.1093/bioinformatics/bti1132
[33] Terzer M (2009) Large scale methods to enumerate extreme rays and elementary modes. PhD thesis, ETH Zurich. doi:10.3929/ethz-a-005945733
[34] Urbanczik, R.; Wagner, C., An improved algorithm for stoichiometric network analysis: theory and applications, Bioinformatics, 21, 7, 1203-1210 (2005) · doi:10.1093/bioinformatics/bti127
[35] Wagner, C.; Urbanczik, R., The geometry of the flux cone of a metabolic network, Biophys J, 89, 3837-3845 (2005) · doi:10.1529/biophysj.104.055129
[36] Ziegler GM (1994) Lectures on polytopes. Springer-Verlag, New York. doi:10.1007/978-1-4613-8431-1 · Zbl 0823.52002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.