×

Multiple colonies of cancer involved in mutual suppression with the immune system. (English) Zbl 1521.92039

Summary: We study the effects of the immune system on multiple cancer colonies. When cancer cells proliferate, cytotoxic T lymphocytes (CTLs) reactive to the cancer-specific antigens are activated, suppressing the growth of cancer colonies. The immune reaction activated by a large cancer colony may suppress and eliminate smaller colonies. However, cancer cells mitigate immune reactions by slowing down the activation of CTLs in dendritic cells with regulatory T cells and by inactivating CTLs attacking cancer cells with immune checkpoints. If cancer cells strongly suppress the immune reaction, the system may become bistable, where both the cancer-dominated and immunity-dominated states are locally stable. We study several models differing in the distance between colonies and the migration speeds of CTLs and regulatory T cells. We examine how the domains of attraction for multiple equilibria change with parameters. Nonlinear cancer-immunity dynamics may produce a sharp transition from a state with a small number of colonies and strong immunity to one with many colonies and weak immunity, resulting in the rapid emergence of many cancer colonies in the same organ or metastatic sites.

MSC:

92C32 Pathology, pathophysiology
92C37 Cell biology

References:

[1] Ahmadzadeh, M.; Johnson, L. A.; Heemskerk, B.; Wunderlich, J. R.; Dudley, M. E.; White, D. E.; Rosenberg, S. A., Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired, Blood, 114, 8, 1537-1544 (2009)
[2] Arulraj, T.; Barik, D.; Hetman, M., Mathematical modeling identifies Lck as a potential mediator for PD-1 induced inhibition of early TCR signaling, PLoS One, 13, 10 (2018)
[3] Bianca, C.; Delitala, M., On the modelling of genetic mutations and immune system competition, Comput. Math. Appl., 61, 2362-2375 (2011) · Zbl 1221.92062
[4] Bouwhuis, M. G.; Gast, A.; Figl, A.; Eggermont, A. M.; Hemminki, K.; Schadendorf, D.; Kumar, R., Polymorphisms in the CD28/CTLA4/ICOS genes: role in malignant melanoma susceptibility and prognosis? Cancer Immunol, Immunother., 59, 303-312 (2010)
[5] Bozic, I.; Antal, T.; Ohtsuki, H.; Carter, H.; Kim, D.; Chen, S. N.; Karchin, R.; Kinzler, K. W.; Vogelstein, B.; Nowak, M. A., Accumulation of driver and passenger mutations during tumor progression, PNAS, 107, 18545-18550 (2010)
[6] Buchbinder, E. I.; Desai, A., CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition, Am. J. Clin. Oncol., 39, 1, 98-106 (2016)
[7] Bunimovich-Mendrazitsky, S.; Shochat, E.; Stone, L., Mathematical model of BCG immunotherapy in superficial bladder cancer, Bull. Math. Biol., 69, 6, 1847-1870 (2007) · Zbl 1298.92035
[8] Candeias, S. M.; Gaipl, U. S., The immune system in cancer prevention development and therapy, Anticancer Agents Med Chem., 16, 101-107 (2016)
[9] Catakovic, K.; Klieser, E.; Neureiter, D.; Geisberger, R., T cell exhaustion: from pathophysiological basics to tumor immunotherapy, Cell Commun. Signal, 15, 1, 1 (2017)
[10] Chambers, C. A.; Sullivan, T. J.; Truong, T.; Allison, J. P., Secondary but not primary T cell responses are enhanced in CTLA-4-deficient CD8+ T cells, Eur. J. Immunol., 28, 10, 3137-3143 (1998)
[11] De Angelis, E.; Mesin, L., Modelling of the immune response: Conceptual frameworks and applications, Math. Models Methods Appl. Sci., 11, 9, 1609-1630 (2001) · Zbl 1013.92016
[12] de Pillis, L. G.; Radunskaya, A., The dynamics of an optimally controlled tumor model: A case study, Math. Comput. Model., 37, 11, 1221-1244 (2003) · Zbl 1043.92018
[13] de Pillis, L. G.; Radunskaya, A. E.; Wiseman, C. L., A validated mathematical model of cell-mediated immune response to tumor growth, Cancer Res., 65, 17, 7950-7958 (2005)
[14] de Pillis, L. G.; Gu, W.; Radunskaya, A. E., Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations, J. Theor. Biol., 238, 4, 841-862 (2006) · Zbl 1445.92135
[15] Dilmec, F.; Ozgonul, A.; Uzunkoy, A.; Akkafa, F., Investigation of CTLA-4 and CD28 gene polymorphisms in a group of Turkish patients with colorectal cancer, Int. J. Immunogenet., 35, 317-321 (2008)
[16] Durrett, R.; Foo, J.; Leder, K.; Mayberry, J.; Michor, F., Intratumor heterogeneity in evolutionary models of tumor progression, Genetics, 188, 2, 461-477 (2011)
[17] Facciabene, A.; Motz, G. T.; Coukos, G., T-regulatory cells: key players in tumor immune escape and angiogenesis, Cancer Res., 72, 9, 2162-2171 (2012)
[18] Folkman, J.; Hochberg, M., Self-regulation of growth in three dimensions, J. Experimental Medicine, 138, 745-753 (1973)
[19] Folkman, J.; Klagsbrun, M., Angiogenic factors, Science, 235, 442-447 (1987)
[20] Freeman, G. J.; Long, A. J.; Iwai, Y.; Bourque, K.; Chernova, T.; Nishimura, H.; Fitz, L. J.; Malenkovich, N.; Okazaki, T.; Byrne, M. C.; Horton, H.; Fouser, L.; Carter, L.; Ling, V.; Bowman, M. R.; Carreno, B. M.; Collins, M.; Wood, C. R.; Honjo, T., Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation, J. Exp. Med., 192, 7, 1027-1034 (2000)
[21] Friedman, A.; Lai, X.; Bertolini, F., Combination therapy for cancer with oncolytic virus and checkpoint inhibitor: a mathematical model, PLoS One, 13, 2 (2018)
[22] Gantmacher, F. R., The theory of matrices (reprint edition) (2000), American Mathematical Society
[23] George, J. T.; Levine, H., Sustained Coevolution in a Stochastic Model of Cancer-Immune Interaction, Cancer Res., 80, 4, 811-819 (2020)
[24] Gong, C.; Milberg, O.; Wang, B.; Vicini, P.; Narwal, R.; Roskos, L.; Popel, A. S., A computational multiscale agent-based model for simulating spatio-temporal tumor immune response to PD1 and PDL1 inhibition, J. R. Soc. Interface, 14, 20170320 (2017)
[25] Gonzalez, H.; Hagerling, C.; Werb, Z., Roles of the immune system in cancer: from tumor initiation to metastatic progression, Genes Dev., 32, 19-20, 1267-1284 (2018)
[26] Griffiths, J. I.; Wallet, P.; Pflieger, L. T.; Stenehjem, D.; Liu, X.; Cosgrove, P. A.; Leggett, N. A.; McQuerry, J. A.; Shrestha, G.; Rossetti, M.; Sunga, G.; Moos, P. L.; Adler, F. R.; Chang, J. T.; Sharma, S.; Bild, A. H., Circulating immune cell phenotype dynamics reflect the strength of tumor-immune cell interactions in patients during immunotherapy, PNAS, 117, 27, 16072-16082 (2020)
[27] Hadinia, A.; Hossieni, S. V.; Erfani, N.; Saberi-Firozi, M.; Fattahi, M. J.; Ghaderi, A., CTLA-4 gene promoter and exon 1 polymorphisms in Iranian patients with gastric and colorectal cancers, J. Gastroenterol. Hepatol., 22, 2283-2287 (2007)
[28] Hillen, T.; Enderling, H.; Harnfeldt, P., The tumor growth paradox and immune system mediated selection for cancer stem cells, Bull. Math. Biol., 75, 161-184 (2013) · Zbl 1272.92026
[29] Holt, R., Predation, apparent competition, and the structure of prey communities, Theor. Popul Biol., 12, 197-229 (1977)
[30] Iwasa, Y.; Michor, F.; Nowak, M. A., Stochastic tunnels in evolutionary dynamics, Genetics, 166, 1571-1579 (2004)
[31] Iwasa, Y.; Nowak, M. A.; Michor, F., Evolution of resistance in clonal expansion, Genetics, 172, 2557-2566 (2006) · Zbl 1189.76277
[32] Kawazu, M.; Ueno, T.; Saeki, K.; Sax, N.; Togashi, Y.; Kanaseki, T.; Chida, K.; Kishigami, F.; Sato, K.; Kojima, S.; Otsuka, M.; Kawazoe, A.; Nishinakamura, H.; Maeda, Y.; Yamamoto, Y.; Yamashita, K.; Inoue, S.; Tanegashima, T.; Matsubara, D.; Tane, K.; Tanaka, Y.; Iinuma, H.; Hashiguchi, Y.; Hazama, S.; Khor, S. S.; Tokunaga, K.; Tsuboi, M.; Niki, T.; Eto, M.; Shitara, K.; Torigoe, T.; Ishihara, S.; Aburatani, H.; Haeno, H.; Nishikawa, H.; Mano, H., HLA Class I analysis provides insight into the genetic and epigenetic background of immune evasion in colorectal cancer with high microsatellite instability, Gastroenterology, 162, 799-812 (2022)
[33] Kennedy, R.; Celis, E., Multiple roles for CD4+ T cells in anti-tumor immune responses, Immunol. Rev., 222, 129-144 (2008)
[34] Khaghanzadeh, N.; Erfani, N.; Ghayumi, M. A.; Ghaderi, A., CTLA4 gene variations and haplotypes in patients with lung cancer, Cancer Genet. Cytogenet., 196, 171-174 (2010)
[35] Kim, K. S.; Kim, S.; Jung, I. H., Hopf bifurcation analysis and optimal control of Treatment in a delayed oncolytic virus dynamics, Math. Comp. Simul., 149, 1-16 (2018) · Zbl 1540.92068
[36] Lai, X. L.; Stiff, A.; Duggan, M.; Wesolowski, R.; Carson, W. E.; Friedman, A., Modeling combination therapy for breast cancer with BET and immune checkpoint inhibitors, PNAS, 115, 21, 5534-5539 (2018)
[37] Lankelma, J.; Luque, R. F.; Dekker, H.; van den Berg, J.; Kooi, B., A new mathematical pharmacodynamic model of clonogenic cancer cell death by doxorubicin, J. Pharmacokinet. Pharmakodyn., 40, 4, 513-525 (2013)
[38] Leopold, K. A.; Recht, A.; Schnitt, S. J.; Connolly, J. L.; Rose, M. A.; Silver, B.; Harris, J. R., Result of conservative surgery and radiation-therapy for multiple synchronous cancers of one breast, Int. J. Radiation Oncol. Biol. Physics, 16, 11-16 (1989)
[39] Liu, W.; Hillen, T.; Freedman, H. I., A mathematical model for M-phase specific chemotherapy including the G(0)-phase and immunoresponse, Math. Biosci. Engineer., 4, 2, 239-259 (2007) · Zbl 1123.92014
[40] Martini, N.; Melamed, M. R., Multiple primary lung cancers, J. Thoracic Cardiovascular Surgeny, 70, 606-612 (1975)
[41] Matsunou, H.; Konishi, F.; Hori, H.; Ikeda, T.; Sasaki, K.; Hirose, Y.; Yamamichi, N., Characteristics of Epstein-Barr virus-associated gastric carcinoma with lymphoid stroma in Japan, Cancer, 77, 1998-2004 (1998)
[42] Matzavinos, A.; Chaplain, M. A.J., Travelling-wave analysis of a model of the immune response to cancer, Copmtes Rendus Biologies, 327, 11, 995-1008 (2004)
[43] Matzavinos, A.; Chaplain, M. A.J.; Kuznetsov, V. A., Mathematical modelling of the spatio-temporal response of cytotoxic T-lymphocytes to a solid tumour, Mathemat. Med. Biol. - J. IMA, 21, 1, 1-34 (2004) · Zbl 1061.92038
[44] Michor, F.; Iwasa, Y.; Nowak, M. A., Dynamics of cancer progression, Nature Rev. Cancer, 4, 197-205 (2004)
[45] Michor, F.; Iwasa, Y.; Vogelstein, B.; Lengauer, C.; Nowak, M. A., Can chromosomal instability initiate tumorigenesis?, Seminars Cancer Biol., 15, 43-139 (2005)
[46] Mpekris, F.; Voutouri, C.; Baish, J. W.; Duda, D. G.; Munn, L. L.; Stylianopoulos, T.; Jain, R. K., Combining microenvironment normalization strategies to improve cancer immunotherapy, PNAS, 18117, 7, 3728-3737 (2020)
[47] Norton, K. A.; Gong, C.; Jamalian, S.; Popel, A. S., Multiscale agent-based and hybrid modeling of the tumor immune microenvironment, Processes, 7, 1, 37 (2019)
[48] Owen, M. R.; Sherratt, J. A., Mathematical modelling of macrophage dynamics in tumours, Math. Models Methods Appl. Sci., 9, 4, 513-539 (1999) · Zbl 0932.92019
[49] Padmanabhan, R.; Kheraldine, H.; Gupta, I.; Meskin, N.; Hamad, A.; Vranic, S.; Al Moustafa, A. E., Quantification of the growth suppression of HER2+ breast cancer colonies under the effect of trastuzunmab and PD-1/PD-L1 inhibitor, Front. Oncol., 12, Article 977664 pp. (2022)
[50] Pardoll, D. M., The blockade of immune checkpoints in cancer immunotherapy, Nat. Rev. Cancer, 12, 252-264 (2012)
[51] Pekalski, J.; Zuk, P. J.; Kochanczyk, M.; Junkin, M.; Kellogg, R.; Tay, S.; Lipniacki, T., Spontaneous NF-kappa B Activation by Autocrine TNF alpha Signaling: A Computational Analysis, PLoS One, 8, 11, e78887 (2013)
[52] Saunders, A. S.; Bender, D. E.; Ray, A. L.; Wu, X.; Morris, K. T.; Pizzo, S. V., Colony-stimulating factor 3 signaling in colon and rectal cancers: immune response and CMS classification in TCGA data, PLoS One, 16, 2 (2021)
[53] Sharma, P.; Hu-Lieskovan, S.; Wargo, J. A.; Ribas, A., Primary adaptive and acquired resistance to cancer immunotherapy, Cell, 168, 707-723 (2017)
[54] Shattler, H.; Ledzewicz, U.; Amini, B., Dynamical properties of a minimally parameterized mathematical model for metronomic chemotherapy, J. Math. Biol., 72, 5, 1255-1280 (2016) · Zbl 1337.92117
[55] Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F., Global cancer statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin., 71, 209-249 (2021)
[56] Tanaka, A.; Sakaguchi, S., Regulatory T cells and cancer immunotherapy, Cell Res., 27, 109-118 (2017)
[57] Topalian, S. L.; Drake, C. G.; Pardoll, D. M., Immune checkpoint blockade: a common denominator approach to cancer therapy, Cancer Cell, 27, 450-461 (2015)
[58] van der Vegt, S. A.; Wang, Y. J.; Polonchuk, L.; Wang, K.; Waters, S. L.; Baker, R. E., A model-informed approach to assess the risk of immune checkpoint inhibitor-induced autoimmune myocarditis, Front. Pharmacol., 13, Article 966180 pp. (2022)
[59] Wei, H. C.; Lin, J. T., Periodically pulsed immunotherapy in a mathematical model of tumor-immune interaction, Int. J. Bifurc. Chaos, 23, 4, e1350068 (2013) · Zbl 1270.34143
[60] Wing, K.; Onishi, Y.; Prieto-Martin, P.; Yamaguchi, T.; Miyara, M.; Fehervari, A.; Nomura, T.; Sakaguchi, S., CTLA-4 control over Foxp3+ regulatory T cell function, Science, 322, 5899, 271-275 (2008)
[61] Zou, W., Regulatory T cells, tumour immunity and immunotherapy, Nat. Rev. Immunol., 6, 295-307 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.