×

Optimal dividend bands revisited: a gradient-based method and evolutionary algorithms. (English) Zbl 1521.91307

Summary: We reconsider the study of optimal dividend strategies in the Cramér-Lundberg risk model. It is well-known that the solution of the classical dividend problem is in general a band strategy. However, the numerical techniques for the identification of the optimal bands available in the literature are very hard to implement and explicit numerical results are known for very few cases only. In this paper we put a gradient-based method into place which allows to determine optimal bands in more general situations. In addition, we adapt an evolutionary algorithm to this dividend problem, which is not as fast, but applicable in considerable generality, and can serve for providing a competitive benchmark. We illustrate the proposed methods in concrete examples, reproducing earlier results in the literature as well as establishing new ones for claim size distributions that could not be studied before.

MSC:

91G05 Actuarial mathematics
93E20 Optimal stochastic control
68W50 Evolutionary algorithms, genetic algorithms (computational aspects)

References:

[1] Albrecher, H.; Thonhauser, S., Optimality results for dividend problems in insurance, RACSAM-Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 103, 2, 295-320 (2009) · Zbl 1187.93138
[2] Asmussen, S.; Albrecher, H., Ruin probabilities, 14 (2010), Singapore: World Scientific, Singapore · Zbl 1247.91080
[3] Avanzi, B., Strategies for dividend distribution: A review, North American Actuarial Journal, 13, 2, 217-251 (2009) · Zbl 1483.91177
[4] Avram, F.; Palmowski, Z.; Pistorius, M. R., On the optimal dividend problem for a spectrally negative Lévy process, The Annals of Applied Probability, 17, 1, 156-180 (2007) · Zbl 1136.60032
[5] Avram, F.; Palmowski, Z.; Pistorius, M. R., On gerber-shiu functions and optimal dividend distribution for a Lévy risk process in the presence of a penalty function, The Annals of Applied Probability, 25, 4, 1868-1935 (2015) · Zbl 1322.60055
[6] Azcue, P.; Muler, N., Optimal reinsurance and dividend distribution policies in the cramér-lundberg model, Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics, 15, 2, 261-308 (2005) · Zbl 1136.91016
[7] Azcue, P.; Muler, N., Optimal dividend policies for compound poisson processes: The case of bounded dividend rates, Insurance: Mathematics and Economics, 51, 1, 26-42 (2012) · Zbl 1284.91201
[8] Berdel, J. (2014). Optimale Bandstrategien für Dividendenzahlungen im Cramér-Lundberg-Modell [PhD thesis]. Karlsruher Instituts für Technologie.
[9] Beyer, H.-G., The theory of evolution strategies (2001), Berlin, Heidelberg: Springer Science & Business Media, Berlin, Heidelberg · Zbl 1001.68186
[10] Beyer, H.-G.; Schwefel, H.-P., Evolution strategies-a comprehensive introduction, Natural Computing, 1, 1, 3-52 (2002) · Zbl 1014.68134
[11] Gerber, H. U. (1969). Entscheidungskriterien für den zusammengesetzten Poisson-Prozess [PhD thesis]. ETH Zurich. · Zbl 0193.20501
[12] Gerber, H. U.; Lin, X. S.; Yang, H., A note on the dividends-penalty identity and the optimal dividend barrier, ASTIN Bulletin, 36, 2, 489-503 (2006) · Zbl 1162.91374
[13] Gerber, H. U.; Shiu, E. S., On the time value of ruin, North American Actuarial Journal, 2, 1, 48-72 (1998) · Zbl 1081.60550
[14] Hubalek, F.; Kyprianou, E.; Dalang, Robert; Dozzi, Marco; Russo, Francesco, Seminar on Stochastic Analysis, Random Fields and Applications VI, Old and new examples of scale functions for spectrally negative Lévy processes, 119-145 (2011), Basel: Birkhäuser, Basel
[15] Kramer, O., A review of constraint-handling techniques for evolution strategies, Applied Computational Intelligence and Soft Computing, 2010, 69-79 (2010)
[16] Kuznetsov, A.; Kyprianou, A. E.; Rivero, V., Lévy Matters II, The theory of scale functions for spectrally negative Lévy processes, 97-186 (2012), Berlin, Heidelberg: Springer, Berlin, Heidelberg · Zbl 1261.60047
[17] Kyprianou, A. E., Fluctuations of Lévy processes with applications: Introductory lectures (2014), Berlin, Heidelberg: Springer Science & Business Media, Berlin, Heidelberg · Zbl 1384.60003
[18] Lee, C.-Y.; Yao, X., Evolutionary programming using mutations based on the Lévy probability distribution, IEEE Transactions on Evolutionary Computation, 8, 1, 1-13 (2004)
[19] Lin, X. S.; Willmot, G. E.; Drekic, S., The classical risk model with a constant dividend barrier: Analysis of the gerber-shiu discounted penalty function, Insurance: Mathematics and Economics, 33, 3, 551-566 (2003) · Zbl 1103.91369
[20] Loeffen, R. L., On optimality of the barrier strategy in de finetti’s dividend problem for spectrally negative Lévy processes, The Annals of Applied Probability, 18, 1669-1680 (2008) · Zbl 1152.60344
[21] Román, S.; Villegas, A. M.; Villegas, J. G., An evolutionary strategy for multiobjective reinsurance optimization, Journal of the Operational Research Society, 69, 10, 1661-1677 (2018)
[22] Rudolph, G., Proceedings of IEEE International Conference on Evolutionary Computation, Nagoya, Japan, Convergence of evolutionary algorithms in general search spaces, 50-54 (1996), IEEE
[23] Salcedo-Sanz, S.; Carro-Calvo, L.; Claramunt, M.; Castañer, A.; Mármol, M., Effectively tackling reinsurance problems by using evolutionary and swarm intelligence algorithms, Risks, 2, 2, 132-145 (2014)
[24] Schmidli, H., Optimisation in non-life insurance, Stochastic Models, 22, 4, 689-722 (2006) · Zbl 1107.93036
[25] Schmidli, H., Stochastic control in insurance (2007), London: Springer Science & Business Media, London
[26] Yao, X.; Liu, Y.; Lin, G., Evolutionary programming made faster, IEEE Transactions on Evolutionary Computation, 3, 2, 82-102 (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.