×

Cheeger bounds on spin-two fields. (English) Zbl 1521.83177

Summary: We consider gravity compactifications whose internal space consists of small bridges connecting larger manifolds, possibly noncompact. We prove that, under rather general assumptions, this leads to a massive spin-two field with very small mass. The argument involves a recently-noticed relation to Bakry-Émery geometry, a version of the so-called Cheeger constant, and the theory of synthetic Ricci lower bounds. The latter technique allows generalizations to non-smooth spaces such as those with D-brane singularities. For \(\mathrm{AdS}_d\) vacua with a bridge admitting an \(\mathrm{AdS}_{d+1}\) interpretation, the holographic dual is a \(\mathrm{CFT}_d\) with two \(\mathrm{CFT}_{ d - 1}\) boundaries. The ratio of their degrees of freedom gives the graviton mass, generalizing results obtained by C. Bachas and I. Lavdas [J. High Energy Phys. 2018, No. 11, Paper No. 3, 22 p. (2018; Zbl 1471.83021)] for \(d = 4\). We also prove new bounds on the higher eigenvalues. These are in agreement with the spin-two swampland conjecture in the regime where the background is scale-separated; in the opposite regime we provide examples where they are in naive tension with it.

MSC:

83E30 String and superstring theories in gravitational theory
83E50 Supergravity
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83C75 Space-time singularities, cosmic censorship, etc.

Citations:

Zbl 1471.83021

References:

[1] De Luca, GB; Tomasiello, A., Leaps and bounds towards scale separation, JHEP, 12, 086 (2021) · Zbl 1521.81216
[2] Bachas, C.; Estes, J., Spin-2 spectrum of defect theories, JHEP, 06, 005 (2011) · Zbl 1298.81207
[3] Csáki, C.; Erlich, J.; Hollowood, TJ; Shirman, Y., Universal aspects of gravity localized on thick branes, Nucl. Phys. B, 581, 309 (2000) · Zbl 0985.83027
[4] Bachas, C.; Lavdas, I., Quantum Gates to other Universes, Fortsch. Phys., 66, 1700096 (2018) · Zbl 1535.81049
[5] Bachas, C.; Lavdas, I., Massive Anti-de Sitter Gravity from String Theory, JHEP, 11, 003 (2018) · Zbl 1471.83021
[6] De Ponti, N.; Mondino, A., Sharp Cheeger-Buser type inequalities in RCD(K, ∞) spaces, J. Geom. Anal., 31, 2416 (2021) · Zbl 1475.53040
[7] Klaewer, D.; Lüst, D.; Palti, E., A Spin-2 Conjecture on the Swampland, Fortsch. Phys., 67, 1800102 (2019) · Zbl 1535.81177
[8] Bachas, C., Massive AdS Supergravitons and Holography, JHEP, 06, 073 (2019) · Zbl 1416.83134
[9] Hinterbichler, K., Theoretical Aspects of Massive Gravity, Rev. Mod. Phys., 84, 671 (2012)
[10] de Rham, C., Massive Gravity, Living Rev. Rel., 17, 7 (2014) · Zbl 1320.83018
[11] Maldacena, JM; Núñez, C., Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A, 16, 822 (2001) · Zbl 0984.83052
[12] D. Bakry and M. Émery, Diffusions hypercontractives, in Séminaire de Probabilités XIX 1983/84 , Lecture Notes in Mathematics1123, Springer (1985), pp. 177-206. · Zbl 0561.60080
[13] Villani, C., Synthetic theory of Ricci curvature bounds, Jpn. J. Math., 11, 219 (2016) · Zbl 1353.53019
[14] L. Ambrosio, Calculus, heat flow and curvature-dimension bounds in metric measure spaces, in proceedings of the International Congress of Mathematicians 2018 , Volume I. Plenary lectures, Rio de Janeiro, Brazil, 1-9 August 2018, World Scientific Publishing, Singapore (2018), pp. 301-340. · Zbl 1475.30129
[15] G.B. De Luca, N. De Ponti, A. Mondino and A. Tomasiello, work in progress.
[16] Ambrosio, L.; Gigli, N.; Savaré, G., Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J., 163, 1405 (2014) · Zbl 1304.35310
[17] N. Gigli, On the differential structure of metric measure spaces and applications, in Memoirs of the American Mathematical Society236, American Mathematical Society, Providence RI U.S.A. (2015). · Zbl 1325.53054
[18] Ambrosio, L.; Gigli, N.; Mondino, A.; Rajala, T., Riemannian Ricci curvature lower bounds in metric measure spaces with σ-finite measure, Trans. Amer. Math. Soc., 367, 4661 (2015) · Zbl 1317.53060
[19] Erbar, M.; Kuwada, K.; Sturm, K-T, On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces, Invent. Math., 201, 993 (2015) · Zbl 1329.53059
[20] L. Ambrosio, A. Mondino and G. Savaré, Nonlinear diffusion equations and curvature conditions in metric measure spaces, in Memoirs of the American Mathematical Society262, American Mathematical Society, Providence RI U.S.A. (2019). · Zbl 1477.49003
[21] Cavalletti, F.; Milman, E., The globalization theorem for the curvature dimension condition, Invent. Math., 226, 1 (2021) · Zbl 1479.53049
[22] K.-T. Sturm, On the geometry of metric measure spaces. I, Acta Math.196 (2006) 65. · Zbl 1105.53035
[23] K.-T. Sturm, On the geometry of metric measure spaces. II, Acta Math.196 (2006) 133. · Zbl 1106.53032
[24] Lott, J.; Villani, C., Ricci curvature for metric-measure spaces via optimal transport, Ann. Math., 169, 903 (2009) · Zbl 1178.53038
[25] Cheeger, J.; Colding, TH, On the structure of spaces with Ricci curvature bounded below. I, J. Diff. Geom., 46, 406 (1997) · Zbl 0902.53034
[26] Cheeger, J.; Colding, TH, On the structure of spaces with Ricci curvature bounded below. II, J. Diff. Geom., 54, 13 (2000) · Zbl 1027.53042
[27] J. Cheeger and T.H. Colding, On the structure of spaces with Ricci curvature bounded below. III, J. Diff. Geom.54 (2000) 37. · Zbl 1027.53043
[28] Gigli, N.; Mondino, A.; Savaré, G., Convergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flows, Proc. Lond. Math. Soc., 111, 1071 (2015) · Zbl 1398.53044
[29] Petrunin, A., Alexandrov meets Lott-Villani-Sturm, Münster J. Math., 4, 53 (2011) · Zbl 1247.53038
[30] Bertrand, J.; Ketterer, C.; Mondello, I.; Richard, T., Stratified spaces and synthetic Ricci curvature bounds, Ann. Inst. Fourier, 71, 123 (2021) · Zbl 1481.53051
[31] Galaz-García, F.; Kell, M.; Mondino, A.; Sosa, G., On quotients of spaces with Ricci curvature bounded below, J. Funct. Anal., 275, 1368 (2018) · Zbl 1396.58013
[32] C. Villani, Optimal transport. Old and new, in Grundlehren der Mathematischen Wissenschaften338, Springer (2009). · Zbl 1156.53003
[33] Cheeger, J., Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., 9, 428 (1999) · Zbl 0942.58018
[34] Ambrosio, L.; Gigli, N.; Savaré, G., Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Invent. Math., 195, 289 (2014) · Zbl 1312.53056
[35] E.B. Davies, Spectral theory and differential operators, in Cambridge Studies in Advanced Mathematics42, Cambridge University Press, Cambridge U.K. (1995). · Zbl 0893.47004
[36] Crampton, B.; Pope, CN; Stelle, KS, Braneworld localisation in hyperbolic spacetime, JHEP, 12, 035 (2014) · Zbl 1333.83223
[37] Lee, JR; Gharan, S.; Trevisan, L., Multiway spectral partitioning and higher-order Cheeger inequalities, J. ACM, 61, 37 (2014) · Zbl 1321.05151
[38] K. Funano, Eigenvalues of Laplacian and multi-way isoperimetric constants on weighted Riemannian manifolds, arXiv:1307.3919.
[39] Miclo, L., On hyperboundedness and spectrum of Markov operators, Invent. Math., 200, 311 (2015) · Zbl 1312.47016
[40] S. Liu, An optimal dimension-free upper bound for eigenvalue ratios, arXiv:1405.2213.
[41] J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, in Problems in analysis (Papers dedicated to Salomon Bochner, 1969), Princeton University Press, Princeton NJ U.S.A. (1970), pp. 195-199. · Zbl 0212.44903
[42] L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems, in Oxford Mathematical Monographs, Oxford University Press, Oxford U.K. (2000). · Zbl 0957.49001
[43] K. Bacher and K.-T. Sturm, Ricci bounds for Euclidean and spherical cones, in Singular phenomena and scaling in mathematical models, Springer (2014), pp. 3-23. · Zbl 1328.53050
[44] Buser, P., A note on the isoperimetric constant, Ann. Sci. Éc. Norm. Supér., 15, 213 (1982) · Zbl 0501.53030
[45] Cremonesi, S.; Tomasiello, A., 6d holographic anomaly match as a continuum limit, JHEP, 05, 031 (2016) · Zbl 1388.83215
[46] M. Van Raamsdonk, Cosmology from confinement?, arXiv:2102.05057 [INSPIRE].
[47] I. Akal, Y. Kusuki, T. Takayanagi and Z. Wei, Codimension two holography for wedges, Phys. Rev. D102 (2020) 126007 [arXiv:2007.06800] [INSPIRE].
[48] Uhlemann, CF, Islands and Page curves in 4d from Type IIB, JHEP, 08, 104 (2021) · Zbl 1469.83041
[49] Aharony, O.; Berkooz, M.; Silverstein, E., Multiple trace operators and nonlocal string theories, JHEP, 08, 006 (2001)
[50] E. Witten, Multitrace operators, boundary conditions, and AdS/CFT correspondence, hep-th/0112258 [INSPIRE].
[51] Berkooz, M.; Sever, A.; Shomer, A., ‘Double trace’ deformations, boundary conditions and space-time singularities, JHEP, 05, 034 (2002)
[52] Karch, A.; Randall, L., Locally localized gravity, JHEP, 05, 008 (2001) · Zbl 1047.81062
[53] A. Karch and L. Randall, Localized gravity in string theory, Phys. Rev. Lett.87 (2001) 061601 [hep-th/0105108] [INSPIRE]. · Zbl 1047.81062
[54] Milman, E., On the role of convexity in functional and isoperimetric inequalities, Proc. Lond. Math. Soc., 99, 32 (2009) · Zbl 1221.32004
[55] N. De Ponti, A. Mondino and D. Semola, The equality case in Cheeger’s and Buser’s inequalities on RCD spaces, J. Funct. Anal.281 (2021) 109022. · Zbl 1462.35013
[56] Keller, M.; Liu, S.; Peyerimhoff, N., A note on eigenvalue bounds for non-compact manifolds, Math. Nachr., 294, 1134 (2021) · Zbl 1523.58032
[57] E. D’Hoker, J. Estes and M. Gutperle, Exact half-BPS Type IIB interface solutions. I. Local solution and supersymmetric Janus, JHEP06 (2007) 021 [arXiv:0705.0022] [INSPIRE].
[58] E. D’Hoker, J. Estes and M. Gutperle, Exact half-BPS Type IIB interface solutions. II. Flux solutions and multi-Janus, JHEP06 (2007) 022 [arXiv:0705.0024] [INSPIRE].
[59] Assel, B.; Bachas, C.; Estes, J.; Gomis, J., Holographic Duals of D = 3 N = 4 Superconformal Field Theories, JHEP, 08, 087 (2011) · Zbl 1298.81237
[60] Hanany, A.; Witten, E., Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics, Nucl. Phys. B, 492, 152 (1997) · Zbl 0996.58509
[61] Gaiotto, D.; Witten, E., Supersymmetric Boundary Conditions in N = 4 Super Yang-Mills Theory, J. Stat. Phys., 135, 789 (2009) · Zbl 1178.81180
[62] Bobev, N.; Crichigno, PM, Universal RG Flows Across Dimensions and Holography, JHEP, 12, 065 (2017) · Zbl 1383.81186
[63] Bah, I.; Beem, C.; Bobev, N.; Wecht, B., Four-Dimensional SCFTs from M5-Branes, JHEP, 06, 005 (2012) · Zbl 1397.81218
[64] Apruzzi, F.; Fazzi, M.; Passias, A.; Tomasiello, A., Supersymmetric AdS_5solutions of massive IIA supergravity, JHEP, 06, 195 (2015) · Zbl 1388.83723
[65] Bah, I.; Passias, A.; Weck, P., Holographic duals of five-dimensional SCFTs on a Riemann surface, JHEP, 01, 058 (2019) · Zbl 1409.81093
[66] Benini, F.; Bobev, N., Two-dimensional SCFTs from wrapped branes and c-extremization, JHEP, 06, 005 (2013) · Zbl 1390.83325
[67] C. Couzens, N.T. Macpherson and A. Passias, \( \mathcal{N} \) = (2, 2) AdS_3from D3-branes wrapped on Riemann surfaces, arXiv:2107.13562 [INSPIRE].
[68] A. Legramandi and C. Núñez, Holographic description of SCFT_5compactifications, arXiv:2109.11554 [INSPIRE]. · Zbl 1483.83081
[69] M. Pernici and E. Sezgin, Spontaneous Compactification of Seven-dimensional Supergravity Theories, Class. Quant. Grav.2 (1985) 673 [INSPIRE]. · Zbl 0576.53074
[70] Rota, A.; Tomasiello, A., AdS_4compactifications of AdS_7solutions in type-II supergravity, JHEP, 07, 076 (2015) · Zbl 1388.83878
[71] F. Apruzzi, M. Fazzi, A. Passias, A. Rota and A. Tomasiello, Six-Dimensional Superconformal Theories and their Compactifications from Type IIA Supergravity, Phys. Rev. Lett.115 (2015) 061601 [arXiv:1502.06616] [INSPIRE]. · Zbl 1388.83723
[72] Gaiotto, D.; Maldacena, JM, The Gravity duals of N = 2 superconformal field theories, JHEP, 10, 189 (2012) · Zbl 1397.83038
[73] P. Buser, Geometry and spectra of compact Riemann surfaces, Springer (2010). · Zbl 1239.32001
[74] Schoen, R., A lower bound for the first eigenvalue of a negatively curved manifold, J. Diff. Geom., 17, 233 (1982) · Zbl 0516.53048
[75] K. Chen, M. Gutperle and C.F. Uhlemann, Spin 2 operators in holographic 4d \(\mathcal{N} = 2\) SCFTs, JHEP06 (2019) 139 [arXiv:1903.07109] [INSPIRE]. · Zbl 1416.81142
[76] Otal, J-P; Rosas, E., Pour toute surface hyperbolique de genre g, λ_2g−2> 1/4, Duke Math. J., 150, 101 (2009) · Zbl 1179.30041
[77] J. Bonifacio, Bootstrap Bounds on Closed Hyperbolic Manifolds, arXiv:2107.09674 [INSPIRE]. · Zbl 1456.83085
[78] Bonifacio, J.; Hinterbichler, K., Bootstrap Bounds on Closed Einstein Manifolds, JHEP, 10, 069 (2020) · Zbl 1456.83085
[79] Córdova, C.; De Luca, GB; Tomasiello, A., New de Sitter Solutions in Ten Dimensions and Orientifold Singularities, JHEP, 08, 093 (2020) · Zbl 1454.83158
[80] P. Breitenlohner and D.Z. Freedman, Stability in Gauged Extended Supergravity, Annals Phys.144 (1982) 249 [INSPIRE]. · Zbl 0606.53044
[81] Orlando, D.; Park, SC, Compact hyperbolic extra dimensions: a M-theory solution and its implications for the LHC, JHEP, 08, 006 (2010) · Zbl 1291.81338
[82] D. Borthwick, Spectral theory of infinite-area hyperbolic surfaces, Springer (2007). · Zbl 1130.58001
[83] Ballmann, W.; Matthiesen, H.; Mondal, S., Small eigenvalues of surfaces of finite type, Compos. Math., 153, 1747 (2017) · Zbl 1401.35216
[84] O. Foster, Lectures on Riemann Surfaces, Springer (1981). · Zbl 0475.30002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.