×

Baryogenesis from ultra-slow-roll inflation. (English) Zbl 1521.83157

Summary: The ultra-slow-roll (USR) inflation represents a class of single-field models with sharp deceleration of the rolling dynamics on small scales, leading to a significantly enhanced power spectrum of the curvature perturbations and primordial black hole (PBH) formation. Such a sharp transition of the inflationary background can trigger the coherent motion of scalar condensates with effective potentials governed by the rolling rate of the inflaton field. We show that a scalar condensate carrying (a combination of) baryon or lepton number can achieve successful baryogenesis through the Affleck-Dine mechanism from unconventional initial conditions excited by the USR transition. Viable parameter space for creating the correct baryon asymmetry of the Universe naturally incorporates the specific limit for PBHs to contribute significantly to dark matter, shedding light on the cosmic coincidence problem between the baryon and dark matter densities today.

MSC:

83C57 Black holes
83F05 Relativistic cosmology
81T12 Effective quantum field theories
83E05 Geometrodynamics and the holographic principle

References:

[1] Planck collaboration, Planck 2018 results. X. Constraints on inflation, Astron. Astrophys.641 (2020) A10 [arXiv:1807.06211] [INSPIRE].
[2] Tristram, M., Planck constraints on the tensor-to-scalar ratio, Astron. Astrophys., 647, A128 (2021) · doi:10.1051/0004-6361/202039585
[3] I. Affleck and M. Dine, A New Mechanism for Baryogenesis, Nucl. Phys. B249 (1985) 361 [INSPIRE].
[4] A. D. Linde, The New Mechanism of Baryogenesis and the Inflationary Universe, Phys. Lett. B160 (1985) 243 [INSPIRE].
[5] A. D. Dolgov, NonGUT baryogenesis, Phys. Rept.222 (1992) 309 [INSPIRE].
[6] M. Dine and A. Kusenko, The origin of the matter-antimatter asymmetry, Rev. Mod. Phys.76 (2003) 1 [hep-ph/0303065] [INSPIRE].
[7] Dine, M.; Randall, L.; Thomas, SD, Baryogenesis from flat directions of the supersymmetric standard model, Nucl. Phys. B, 458, 291 (1996) · Zbl 1003.81575 · doi:10.1016/0550-3213(95)00538-2
[8] Hook, A., Baryogenesis in a CP invariant theory, JHEP, 11, 143 (2015) · Zbl 1388.83921 · doi:10.1007/JHEP11(2015)143
[9] Wu, Y-P; Petraki, K., Stochastic Baryogenesis, JCAP, 01, 022 (2021) · Zbl 1484.83156 · doi:10.1088/1475-7516/2021/01/022
[10] J. Yokoyama, Chaotic new inflation and formation of primordial black holes, Phys. Rev. D58 (1998) 083510 [astro-ph/9802357] [INSPIRE].
[11] Saito, R.; Yokoyama, J.; Nagata, R., Single-field inflation, anomalous enhancement of superhorizon fluctuations, and non-Gaussianity in primordial black hole formation, JCAP, 06, 024 (2008) · doi:10.1088/1475-7516/2008/06/024
[12] García-Bellido, J.; Ruiz Morales, E., Primordial black holes from single field models of inflation, Phys. Dark Univ., 18, 47 (2017) · doi:10.1016/j.dark.2017.09.007
[13] Kannike, K.; Marzola, L.; Raidal, M.; Veermäe, H., Single Field Double Inflation and Primordial Black Holes, JCAP, 09, 020 (2017) · Zbl 1515.83156 · doi:10.1088/1475-7516/2017/09/020
[14] Germani, C.; Prokopec, T., On primordial black holes from an inflection point, Phys. Dark Univ., 18, 6 (2017) · doi:10.1016/j.dark.2017.09.001
[15] Motohashi, H.; Hu, W., Primordial Black Holes and Slow-Roll Violation, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.063503
[16] Cicoli, M.; Diaz, VA; Pedro, FG, Primordial Black Holes from String Inflation, JCAP, 06, 034 (2018) · doi:10.1088/1475-7516/2018/06/034
[17] Özsoy, O.; Parameswaran, S.; Tasinato, G.; Zavala, I., Mechanisms for Primordial Black Hole Production in String Theory, JCAP, 07, 005 (2018) · Zbl 1527.83061 · doi:10.1088/1475-7516/2018/07/005
[18] Byrnes, CT; Cole, PS; Patil, SP, Steepest growth of the power spectrum and primordial black holes, JCAP, 06, 028 (2019) · doi:10.1088/1475-7516/2019/06/028
[19] Cheng, S-L; Lee, W.; Ng, K-W, Superhorizon curvature perturbation in ultraslow-roll inflation, Phys. Rev. D, 99 (2019) · doi:10.1103/PhysRevD.99.063524
[20] Carrilho, P.; Malik, KA; Mulryne, DJ, Dissecting the growth of the power spectrum for primordial black holes, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.103529
[21] Özsoy, O.; Tasinato, G., On the slope of the curvature power spectrum in non-attractor inflation, JCAP, 04, 048 (2020) · Zbl 1491.83053 · doi:10.1088/1475-7516/2020/04/048
[22] Liu, J.; Guo, Z-K; Cai, R-G, Analytical approximation of the scalar spectrum in the ultraslow-roll inflationary models, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.083535
[23] Ballesteros, G.; Rey, J.; Taoso, M.; Urbano, A., Stochastic inflationary dynamics beyond slow-roll and consequences for primordial black hole formation, JCAP, 08, 043 (2020) · Zbl 1492.83077 · doi:10.1088/1475-7516/2020/08/043
[24] Ng, K-W; Wu, Y-P, Constant-rate inflation: primordial black holes from conformal weight transitions, JHEP, 11, 076 (2021) · Zbl 1521.83144 · doi:10.1007/JHEP11(2021)076
[25] Leach, SM; Liddle, AR, Inflationary perturbations near horizon crossing, Phys. Rev. D, 63 (2001) · doi:10.1103/PhysRevD.63.043508
[26] Leach, SM; Sasaki, M.; Wands, D.; Liddle, AR, Enhancement of superhorizon scale inflationary curvature perturbations, Phys. Rev. D, 64 (2001) · doi:10.1103/PhysRevD.64.023512
[27] Tsamis, NC; Woodard, RP, Improved estimates of cosmological perturbations, Phys. Rev. D, 69 (2004) · doi:10.1103/PhysRevD.69.084005
[28] W. H. Kinney, Horizon crossing and inflation with large eta, Phys. Rev. D72 (2005) 023515 [gr-qc/0503017] [INSPIRE].
[29] Martin, J.; Motohashi, H.; Suyama, T., Ultra Slow-Roll Inflation and the non-Gaussianity Consistency Relation, Phys. Rev. D, 87 (2013) · doi:10.1103/PhysRevD.87.023514
[30] Motohashi, H.; Starobinsky, AA; Yokoyama, J., Inflation with a constant rate of roll, JCAP, 09, 018 (2015) · doi:10.1088/1475-7516/2015/09/018
[31] Anguelova, L.; Suranyi, P.; Wijewardhana, LCR, Systematics of Constant Roll Inflation, JCAP, 02, 004 (2018) · Zbl 1527.83102 · doi:10.1088/1475-7516/2018/02/004
[32] Turner, MS, Baryon production by primordial black holes, Phys. Lett. B, 89, 155 (1979) · doi:10.1016/0370-2693(79)90095-9
[33] Barrow, JD; Copeland, EJ; Kolb, EW; Liddle, AR, Baryogenesis in extended inflation. 2. Baryogenesis via primordial black holes, Phys. Rev. D, 43, 984 (1991) · doi:10.1103/PhysRevD.43.984
[34] Majumdar, AS; Das Gupta, P.; Saxena, RP, Baryogenesis from black hole evaporation, Int. J. Mod. Phys. D, 4, 517 (1995) · doi:10.1142/S0218271895000363
[35] D. Baumann, P. J. Steinhardt and N. Turok, Primordial Black Hole Baryogenesis, hep-th/0703250 [INSPIRE].
[36] Bambi, C.; Dolgov, AD; Petrov, AA, Black holes as antimatter factories, JCAP, 09, 013 (2009) · doi:10.1088/1475-7516/2009/09/013
[37] Hamada, Y.; Iso, S., Baryon asymmetry from primordial black holes, PTEP, 2017 (2017) · Zbl 1477.83055
[38] Hooper, D.; Krnjaic, G., GUT Baryogenesis With Primordial Black Holes, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.043504
[39] Jyoti Das, S.; Mahanta, D.; Borah, D., Low scale leptogenesis and dark matter in the presence of primordial black holes, JCAP, 11, 019 (2021)
[40] A. Ambrosone, R. Calabrese, D. F. G. Fiorillo, G. Miele and S. Morisi, Absorption from Primordial Black Holes as source of baryon asymmetry, arXiv:2106.11980 [INSPIRE].
[41] Fujita, T.; Kawasaki, M.; Harigaya, K.; Matsuda, R., Baryon asymmetry, dark matter, and density perturbation from primordial black holes, Phys. Rev. D, 89 (2014) · doi:10.1103/PhysRevD.89.103501
[42] J. García-Bellido, B. Carr and S. Clesse, A common origin for baryons and dark matter, arXiv:1904.11482 [INSPIRE].
[43] Petraki, K.; Volkas, RR, Review of asymmetric dark matter, Int. J. Mod. Phys. A, 28, 1330028 (2013) · doi:10.1142/S0217751X13300287
[44] Bell, NF; Petraki, K.; Shoemaker, IM; Volkas, RR, Pangenesis in a Baryon-Symmetric Universe: Dark and Visible Matter via the Affleck-Dine Mechanism, Phys. Rev. D, 84 (2011) · doi:10.1103/PhysRevD.84.123505
[45] von Harling, B.; Petraki, K.; Volkas, RR, Affleck-Dine dynamics and the dark sector of pangenesis, JCAP, 05, 021 (2012) · doi:10.1088/1475-7516/2012/05/021
[46] Flores, MM; Kusenko, A., Primordial Black Holes from Long-Range Scalar Forces and Scalar Radiative Cooling, Phys. Rev. Lett., 126 (2021) · doi:10.1103/PhysRevLett.126.041101
[47] Jain, RK; Chingangbam, P.; Gong, J-O; Sriramkumar, L.; Souradeep, T., Punctuated inflation and the low CMB multipoles, JCAP, 01, 009 (2009) · doi:10.1088/1475-7516/2009/01/009
[48] Jain, RK; Chingangbam, P.; Sriramkumar, L.; Souradeep, T., The tensor-to-scalar ratio in punctuated inflation, Phys. Rev. D, 82 (2010) · doi:10.1103/PhysRevD.82.023509
[49] Allahverdi, R.; Enqvist, K.; García-Bellido, J.; Jokinen, A.; Mazumdar, A., MSSM flat direction inflation: Slow roll, stability, fine tunning and reheating, JCAP, 06, 019 (2007) · doi:10.1088/1475-7516/2007/06/019
[50] Ragavendra, HV; Saha, P.; Sriramkumar, L.; Silk, J., Primordial black holes and secondary gravitational waves from ultraslow roll and punctuated inflation, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.083510
[51] Biagetti, M.; Franciolini, G.; Kehagias, A.; Riotto, A., Primordial Black Holes from Inflation and Quantum Diffusion, JCAP, 07, 032 (2018) · Zbl 1527.83047 · doi:10.1088/1475-7516/2018/07/032
[52] Motohashi, H.; Mukohyama, S.; Oliosi, M., Constant Roll and Primordial Black Holes, JCAP, 03, 002 (2020) · doi:10.1088/1475-7516/2020/03/002
[53] Cai, Y-F; Chen, X.; Namjoo, MH; Sasaki, M.; Wang, D-G; Wang, Z., Revisiting non-Gaussianity from non-attractor inflation models, JCAP, 05, 012 (2018) · Zbl 1536.83155 · doi:10.1088/1475-7516/2018/05/012
[54] Starobinsky, AA; Yokoyama, J., Equilibrium state of a selfinteracting scalar field in the de Sitter background, Phys. Rev. D, 50, 6357 (1994) · doi:10.1103/PhysRevD.50.6357
[55] Antoniadis, I.; Mazur, PO; Mottola, E., Conformal Invariance, Dark Energy, and CMB Non-Gaussianity, JCAP, 09, 024 (2012) · doi:10.1088/1475-7516/2012/09/024
[56] Strominger, A., The dS/CFT correspondence, JHEP, 10, 034 (2001) · doi:10.1088/1126-6708/2001/10/034
[57] Ng, GS; Strominger, A., State/Operator Correspondence in Higher-Spin dS/CFT, Class. Quant. Grav., 30 (2013) · Zbl 1269.83061 · doi:10.1088/0264-9381/30/10/104002
[58] Jafferis, DL; Lupsasca, A.; Lysov, V.; Ng, GS; Strominger, A., Quasinormal quantization in de Sitter spacetime, JHEP, 01, 004 (2015) · Zbl 1388.83121 · doi:10.1007/JHEP01(2015)004
[59] Wang, L-T; Xianyu, Z-Z, In Search of Large Signals at the Cosmological Collider, JHEP, 02, 044 (2020) · doi:10.1007/JHEP02(2020)044
[60] Wang, L-T; Xianyu, Z-Z, Gauge Boson Signals at the Cosmological Collider, JHEP, 11, 082 (2020) · doi:10.1007/JHEP11(2020)082
[61] Bodas, A.; Kumar, S.; Sundrum, R., The Scalar Chemical Potential in Cosmological Collider Physics, JHEP, 02, 079 (2021) · doi:10.1007/JHEP02(2021)079
[62] Wu, Y-P; Yang, L.; Kusenko, A., Leptogenesis from spontaneous symmetry breaking during inflation, JHEP, 12, 088 (2019) · Zbl 1479.85012 · doi:10.1007/JHEP12(2019)088
[63] Anisimov, A.; Dine, M., Some issues in flat direction baryogenesis, Nucl. Phys. B, 619, 729 (2001) · doi:10.1016/S0550-3213(01)00550-8
[64] Carr, BJ, The primordial black hole mass spectrum, Astrophys. J., 201, 1 (1975) · doi:10.1086/153853
[65] Bardeen, JM; Bond, JR; Kaiser, N.; Szalay, AS, The Statistics of Peaks of Gaussian Random Fields, Astrophys. J., 304, 15 (1986) · doi:10.1086/164143
[66] Green, AM; Liddle, AR; Malik, KA; Sasaki, M., A new calculation of the mass fraction of primordial black holes, Phys. Rev. D, 70 (2004) · doi:10.1103/PhysRevD.70.041502
[67] Young, S.; Byrnes, CT; Sasaki, M., Calculating the mass fraction of primordial black holes, JCAP, 07, 045 (2014) · doi:10.1088/1475-7516/2014/07/045
[68] Suyama, T.; Yokoyama, S., A novel formulation of the primordial black hole mass function, PTEP, 2020 (2020) · Zbl 1477.83067
[69] Wu, Y-P, Peak statistics for the primordial black hole abundance, Phys. Dark Univ., 30 (2020) · doi:10.1016/j.dark.2020.100654
[70] Young, S.; Musso, M., Application of peaks theory to the abundance of primordial black holes, JCAP, 11, 022 (2020) · Zbl 1486.83118 · doi:10.1088/1475-7516/2020/11/022
[71] Yoo, C-M; Harada, T.; Garriga, J.; Kohri, K., Primordial black hole abundance from random Gaussian curvature perturbations and a local density threshold, PTEP, 2018 (2018) · Zbl 07408492
[72] De Luca, V.; Franciolini, G.; Kehagias, A.; Peloso, M.; Riotto, A.; Ünal, C., The Ineludible non-Gaussianity of the Primordial Black Hole Abundance, JCAP, 07, 048 (2019) · Zbl 1515.83161 · doi:10.1088/1475-7516/2019/07/048
[73] Kalaja, A., From Primordial Black Holes Abundance to Primordial Curvature Power Spectrum (and back), JCAP, 10, 031 (2019) · Zbl 1515.83155 · doi:10.1088/1475-7516/2019/10/031
[74] Kawasaki, M.; Nakatsuka, H., Effect of nonlinearity between density and curvature perturbations on the primordial black hole formation, Phys. Rev. D, 99 (2019) · doi:10.1103/PhysRevD.99.123501
[75] Young, S.; Musco, I.; Byrnes, CT, Primordial black hole formation and abundance: contribution from the non-linear relation between the density and curvature perturbation, JCAP, 11, 012 (2019) · Zbl 07502067 · doi:10.1088/1475-7516/2019/11/012
[76] Byrnes, CT; Copeland, EJ; Green, AM, Primordial black holes as a tool for constraining non-Gaussianity, Phys. Rev. D, 86 (2012) · doi:10.1103/PhysRevD.86.043512
[77] Tada, Y.; Yokoyama, S., Primordial black holes as biased tracers, Phys. Rev. D, 91 (2015) · doi:10.1103/PhysRevD.91.123534
[78] Young, S.; Regan, D.; Byrnes, CT, Influence of large local and non-local bispectra on primordial black hole abundance, JCAP, 02, 029 (2016) · doi:10.1088/1475-7516/2016/02/029
[79] Franciolini, G.; Kehagias, A.; Matarrese, S.; Riotto, A., Primordial Black Holes from Inflation and non-Gaussianity, JCAP, 03, 016 (2018) · Zbl 1530.83028 · doi:10.1088/1475-7516/2018/03/016
[80] Atal, V.; Germani, C., The role of non-Gaussianities in Primordial Black Hole formation, Phys. Dark Univ., 24 (2019) · doi:10.1016/j.dark.2019.100275
[81] Taoso, M.; Urbano, A., Non-Gaussianities for primordial black hole formation, JCAP, 08, 016 (2021) · Zbl 1492.83069 · doi:10.1088/1475-7516/2021/08/016
[82] Germani, C.; Sheth, RK, Nonlinear statistics of primordial black holes from Gaussian curvature perturbations, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.063520
[83] Byrnes, CT; Hindmarsh, M.; Young, S.; Hawkins, MRS, Primordial black holes with an accurate QCD equation of state, JCAP, 08, 041 (2018) · doi:10.1088/1475-7516/2018/08/041
[84] Niemeyer, JC; Jedamzik, K., Near-critical gravitational collapse and the initial mass function of primordial black holes, Phys. Rev. Lett., 80, 5481 (1998) · doi:10.1103/PhysRevLett.80.5481
[85] J. Yokoyama, Cosmological constraints on primordial black holes produced in the near critical gravitational collapse, Phys. Rev. D58 (1998) 107502 [gr-qc/9804041] [INSPIRE].
[86] Musco, I.; Miller, JC; Polnarev, AG, Primordial black hole formation in the radiative era: Investigation of the critical nature of the collapse, Class. Quant. Grav., 26 (2009) · Zbl 1181.83131 · doi:10.1088/0264-9381/26/23/235001
[87] Musco, I.; Miller, JC, Primordial black hole formation in the early universe: critical behaviour and self-similarity, Class. Quant. Grav., 30 (2013) · Zbl 1273.83104 · doi:10.1088/0264-9381/30/14/145009
[88] Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys.641 (2020) A6 [Erratum ibid.652 (2021) C4] [arXiv:1807.06209] [INSPIRE].
[89] Ezquiaga, JM; García-Bellido, J.; Vennin, V., The exponential tail of inflationary fluctuations: consequences for primordial black holes, JCAP, 03, 029 (2020) · Zbl 1490.83076 · doi:10.1088/1475-7516/2020/03/029
[90] Figueroa, DG; Raatikainen, S.; Rasanen, S.; Tomberg, E., Non-Gaussian Tail of the Curvature Perturbation in Stochastic Ultraslow-Roll Inflation: Implications for Primordial Black Hole Production, Phys. Rev. Lett., 127 (2021) · doi:10.1103/PhysRevLett.127.101302
[91] Pattison, C.; Vennin, V.; Wands, D.; Assadullahi, H., Ultra-slow-roll inflation with quantum diffusion, JCAP, 04, 080 (2021) · Zbl 1486.83151 · doi:10.1088/1475-7516/2021/04/080
[92] Biagetti, M.; De Luca, V.; Franciolini, G.; Kehagias, A.; Riotto, A., The formation probability of primordial black holes, Phys. Lett. B, 820 (2021) · doi:10.1016/j.physletb.2021.136602
[93] Harada, T.; Yoo, C-M; Nakama, T.; Koga, Y., Cosmological long-wavelength solutions and primordial black hole formation, Phys. Rev. D, 91 (2015) · doi:10.1103/PhysRevD.91.084057
[94] Musco, I., Threshold for primordial black holes: Dependence on the shape of the cosmological perturbations, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.123524
[95] Boudaud, M.; Cirelli, M., Voyager 1 e^±Further Constrain Primordial Black Holes as Dark Matter, Phys. Rev. Lett., 122 (2019) · doi:10.1103/PhysRevLett.122.041104
[96] DeRocco, W.; Graham, PW, Constraining Primordial Black Hole Abundance with the Galactic 511 keV Line, Phys. Rev. Lett., 123 (2019) · doi:10.1103/PhysRevLett.123.251102
[97] Laha, R., Primordial Black Holes as a Dark Matter Candidate Are Severely Constrained by the Galactic Center 511 keV γ -Ray Line, Phys. Rev. Lett., 123 (2019) · doi:10.1103/PhysRevLett.123.251101
[98] Laha, R.; Muñoz, JB; Slatyer, TR, INTEGRAL constraints on primordial black holes and particle dark matter, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.123514
[99] Carr, BJ; Kohri, K.; Sendouda, Y.; Yokoyama, J., New cosmological constraints on primordial black holes, Phys. Rev. D, 81 (2010) · doi:10.1103/PhysRevD.81.104019
[100] Dasgupta, B.; Laha, R.; Ray, A., Neutrino and positron constraints on spinning primordial black hole dark matter, Phys. Rev. Lett., 125 (2020) · doi:10.1103/PhysRevLett.125.101101
[101] Poulin, V.; Lesgourgues, J.; Serpico, PD, Cosmological constraints on exotic injection of electromagnetic energy, JCAP, 03, 043 (2017) · doi:10.1088/1475-7516/2017/03/043
[102] Clark, S.; Dutta, B.; Gao, Y.; Strigari, LE; Watson, S., Planck Constraint on Relic Primordial Black Holes, Phys. Rev. D, 95 (2017) · doi:10.1103/PhysRevD.95.083006
[103] Clark, S.; Dutta, B.; Gao, Y.; Ma, Y-Z; Strigari, LE, 21 cm limits on decaying dark matter and primordial black holes, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.043006
[104] Hektor, A.; Hütsi, G.; Marzola, L.; Raidal, M.; Vaskonen, V.; Veermäe, H., Constraining Primordial Black Holes with the EDGES 21-cm Absorption Signal, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.023503
[105] S. Mittal, A. Ray, G. Kulkarni and B. Dasgupta, Constraining primordial black holes as dark matter using the global 21-cm signal with X-ray heating and excess radio background, arXiv:2107.02190 [INSPIRE].
[106] Carr, B.; Kohri, K.; Sendouda, Y.; Yokoyama, J., Constraints on primordial black holes, Rept. Prog. Phys., 84 (2021) · doi:10.1088/1361-6633/ac1e31
[107] Katz, A.; Kopp, J.; Sibiryakov, S.; Xue, W., Femtolensing by Dark Matter Revisited, JCAP, 12, 005 (2018) · doi:10.1088/1475-7516/2018/12/005
[108] Ray, A.; Laha, R.; Muñoz, JB; Caputo, R., Near future MeV telescopes can discover asteroid-mass primordial black hole dark matter, Phys. Rev. D, 104 (2021) · doi:10.1103/PhysRevD.104.023516
[109] Capela, F.; Pshirkov, M.; Tinyakov, P., Constraints on primordial black holes as dark matter candidates from capture by neutron stars, Phys. Rev. D, 87 (2013) · doi:10.1103/PhysRevD.87.123524
[110] Graham, PW; Rajendran, S.; Varela, J., Dark Matter Triggers of Supernovae, Phys. Rev. D, 92 (2015) · doi:10.1103/PhysRevD.92.063007
[111] Green, AM; Kavanagh, BJ, Primordial Black Holes as a dark matter candidate, J. Phys. G, 48 (2021) · doi:10.1088/1361-6471/abc534
[112] Nemiroff, RJ; Gould, A., Probing for MACHOs of mass 10^−15-solar-mass to 10^−7-solar-mass with gamma-ray burst parallax spacecraft, Astrophys. J. Lett., 452 (1995) · doi:10.1086/309722
[113] Jung, S.; Kim, T., Gamma-ray burst lensing parallax: Closing the primordial black hole dark matter mass window, Phys. Rev. Res., 2 (2020) · doi:10.1103/PhysRevResearch.2.013113
[114] Bai, Y.; Orlofsky, N., Microlensing of X-ray Pulsars: a Method to Detect Primordial Black Hole Dark Matter, Phys. Rev. D, 99 (2019) · doi:10.1103/PhysRevD.99.123019
[115] Dutta, B.; Kar, A.; Strigari, LE, Constraints on MeV dark matter and primordial black holes: Inverse Compton signals at the SKA, JCAP, 03, 011 (2021) · doi:10.1088/1475-7516/2021/03/011
[116] Coogan, A.; Morrison, L.; Profumo, S., Direct Detection of Hawking Radiation from Asteroid-Mass Primordial Black Holes, Phys. Rev. Lett., 126 (2021) · doi:10.1103/PhysRevLett.126.171101
[117] Ballesteros, G.; Coronado-Blázquez, J.; Gaggero, D., X-ray and gamma-ray limits on the primordial black hole abundance from Hawking radiation, Phys. Lett. B, 808 (2020) · doi:10.1016/j.physletb.2020.135624
[118] A. Kashlinsky et al., Electromagnetic probes of primordial black holes as dark matter, arXiv:1903.04424 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.