×

Inverted c-functions in thermal states. (English) Zbl 1521.81355

Summary: We first compute the effect of a chiral anomaly, charge, and a magnetic field on the entanglement entropy in \(\mathcal{N} = 4\) Super-Yang-Mills theory at strong coupling via holography. Depending on the width of the entanglement strip the entanglement entropy probes energy scales from the ultraviolet to the infrared energy regime of this quantum field theory (QFT) prepared in a given state. From the entanglement entropy, we compute holographic c-functions and demonstrate an inverted c-theorem for them. That is, these c-functions in generic thermal states monotonically increase towards the infrared (IR) energy regime. This is in contrast to the c-functions in vacuum states which decrease along the renormalization group flow towards the IR regime of a renormalizable QFT. Furthermore, in thermal states and in the IR limit, the c-functions behave thermally, growing proportionally to the value of the thermal entropy. The chiral anomaly affects the c-functions more in the IR regime, and its effect is peaked at an intermediate value of the magnetic field at a fixed chemical potential and temperature.

MSC:

81T50 Anomalies in quantum field theory
83C57 Black holes
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T17 Renormalization group methods applied to problems in quantum field theory
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T35 Correspondence, duality, holography (AdS/CFT, gauge/gravity, etc.)

Software:

Mathematica

References:

[1] A.B. Zamolodchikov, Irreversibility of the flux of the renormalization group in a 2D field theory, JETP Lett.43 (1986) 730 [Pisma Zh. Eksp. Teor. Fiz.43 (1986) 565] [INSPIRE].
[2] J.L. Cardy, Is there a c theorem in four-dimensions?, Phys. Lett. B215 (1988) 749 [INSPIRE].
[3] Ryu, S.; Takayanagi, T., Aspects of holographic entanglement entropy, JHEP, 08, 045 (2006) · Zbl 1228.83110 · doi:10.1088/1126-6708/2006/08/045
[4] Freedman, DZ; Gubser, SS; Pilch, K.; Warner, NP, Renormalization group flows from holography supersymmetry and a c-theorem, Adv. Theor. Math. Phys., 3, 363 (1999) · Zbl 0976.83067 · doi:10.4310/ATMP.1999.v3.n2.a7
[5] Casini, H.; Huerta, M., A finite entanglement entropy and the c-theorem, Phys. Lett. B, 600, 142 (2004) · Zbl 1247.81021 · doi:10.1016/j.physletb.2004.08.072
[6] H. Casini and M. Huerta, A c-theorem for the entanglement entropy, J. Phys. A40 (2007) 7031 [cond-mat/0610375] [INSPIRE].
[7] Nishioka, T.; Takayanagi, T., AdS bubbles, entropy and closed string tachyons, JHEP, 01, 090 (2007) · doi:10.1088/1126-6708/2007/01/090
[8] Myers, RC; Sinha, A., Holographic c-theorems in arbitrary dimensions, JHEP, 01, 125 (2011) · Zbl 1214.83036 · doi:10.1007/JHEP01(2011)125
[9] Myers, RC; Singh, A., Comments on holographic entanglement entropy and RG flows, JHEP, 04, 122 (2012) · Zbl 1348.81337 · doi:10.1007/JHEP04(2012)122
[10] Osborn, H., Derivation of a four dimensional c-theorem for renormaliseable quantum field theories, Phys. Lett. B, 222, 97 (1989) · doi:10.1016/0370-2693(89)90729-6
[11] Komargodski, Z., The constraints of conformal symmetry on RG flows, JHEP, 07, 069 (2012) · Zbl 1397.81383 · doi:10.1007/JHEP07(2012)069
[12] Casini, H.; Teste, E.; Torroba, G., Relative entropy and the RG flow, JHEP, 03, 089 (2017) · Zbl 1377.81161 · doi:10.1007/JHEP03(2017)089
[13] Lashkari, N., Entanglement at a scale and renormalization monotones, JHEP, 01, 219 (2019) · Zbl 1409.81019 · doi:10.1007/JHEP01(2019)219
[14] X.-G. Wen, Zoo of quantum-topological phases of matter, Rev. Mod. Phys.89 (2017) 041004 [arXiv:1610.03911] [INSPIRE].
[15] Srednicki, M., Chaos and quantum thermalization, Phys. Rev. E, 50, 888 (1994) · doi:10.1103/PhysRevE.50.888
[16] J. M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A43 (1991) 2046.
[17] A.C. Wall, Testing the generalized second law in 1 + 1 dimensional conformal vacua: an argument for the causal horizon, Phys. Rev. D85 (2012) 024015 [arXiv:1105.3520] [INSPIRE]
[18] Castro, A.; Detournay, S.; Iqbal, N.; Perlmutter, E., Holographic entanglement entropy and gravitational anomalies, JHEP, 07, 114 (2014) · doi:10.1007/JHEP07(2014)114
[19] Azeyanagi, T.; Loganayagam, R.; Ng, GS, Holographic entanglement for Chern-Simons terms, JHEP, 02, 001 (2017) · Zbl 1377.58019 · doi:10.1007/JHEP02(2017)001
[20] W.-z. Guo and R.-x. Miao, Entropy for gravitational Chern-Simons terms by squashed cone method, JHEP04 (2016) 006 [arXiv:1506.08397] [INSPIRE].
[21] Nishioka, T.; Yarom, A., Anomalies and entanglement entropy, JHEP, 03, 077 (2016) · Zbl 1388.83311 · doi:10.1007/JHEP03(2016)077
[22] T. Nishioka, Entanglement entropy: holography and renormalization group, Rev. Mod. Phys.90 (2018) 035007 [arXiv:1801.10352] [INSPIRE].
[23] V. Sahakian, Holography, a covariant c-function, and the geometry of the renormalization group, Phys. Rev. D62 (2000) 126011 [hep-th/9910099] [INSPIRE].
[24] Paulos, MF, Holographic phase space: c-functions and black holes as renormalization group flows, JHEP, 05, 043 (2011) · Zbl 1296.81111 · doi:10.1007/JHEP05(2011)043
[25] Banerjee, S.; Paul, P., Black hole singularity, generalized (holographic) c-theorem and entanglement negativity, JHEP, 02, 043 (2017) · Zbl 1377.83059 · doi:10.1007/JHEP02(2017)043
[26] Frenkel, A.; Hartnoll, SA; Kruthoff, J.; Shi, ZD, Holographic flows from CFT to the Kasner universe, JHEP, 08, 003 (2020) · Zbl 1454.83112 · doi:10.1007/JHEP08(2020)003
[27] Y.-Q. Wang, Y. Song, Q. Xiang, S.-W. Wei, T. Zhu and Y.-X. Liu, Holographic flows with scalar self-interaction toward the Kasner universe, arXiv:2009.06277 [INSPIRE].
[28] U. Gürsoy, E. Kiritsis, F. Nitti and L. Silva Pimenta, Exotic holographic RG flows at finite temperature, JHEP10 (2018) 173 [arXiv:1805.01769] [INSPIRE]. · Zbl 1402.81197
[29] Bea, Y.; Mateos, D., Heating up exotic RG flows with holography, JHEP, 08, 034 (2018) · Zbl 1396.81161 · doi:10.1007/JHEP08(2018)034
[30] A. Golubtsova, Holographic RG flow at zero and finite temperatures, EPJ Web Conf.191 (2018) 05012 [INSPIRE].
[31] Srednicki, M., Entropy and area, Phys. Rev. Lett., 71, 666 (1993) · Zbl 0972.81649 · doi:10.1103/PhysRevLett.71.666
[32] L. Bombelli, R.K. Koul, J. Lee and R.D. Sorkin, A quantum source of entropy for black holes, Phys. Rev. D34 (1986) 373 [INSPIRE]. · Zbl 1222.83077
[33] G. ’t Hooft, On the quantum structure of a black hole, Nucl. Phys. B256 (1985) 727 [INSPIRE].
[34] Hubeny, VE; Rangamani, M.; Takayanagi, T., A covariant holographic entanglement entropy proposal, JHEP, 07, 062 (2007) · doi:10.1088/1126-6708/2007/07/062
[35] A.C. Wall, Maximin surfaces, and the strong subadditivity of the covariant holographic entanglement entropy, Class. Quant. Grav.31 (2014) 225007 [arXiv:1211.3494] [INSPIRE]. · Zbl 1304.81139
[36] Engelhardt, N.; Wall, AC, Quantum extremal surfaces: holographic entanglement entropy beyond the classical regime, JHEP, 01, 073 (2015) · doi:10.1007/JHEP01(2015)073
[37] X. Dong, D. Harlow and A.C. Wall, Reconstruction of bulk operators within the entanglement wedge in gauge-gravity duality, Phys. Rev. Lett.117 (2016) 021601 [arXiv:1601.05416] [INSPIRE].
[38] Almheiri, A.; Engelhardt, N.; Marolf, D.; Maxfield, H., The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole, JHEP, 12, 063 (2019) · Zbl 1431.83123 · doi:10.1007/JHEP12(2019)063
[39] Almheiri, A.; Marolf, D.; Polchinski, J.; Sully, J., Black holes: complementarity or firewalls?, JHEP, 02, 062 (2013) · Zbl 1342.83121 · doi:10.1007/JHEP02(2013)062
[40] Almheiri, A.; Marolf, D.; Polchinski, J.; Stanford, D.; Sully, J., An apologia for firewalls, JHEP, 09, 018 (2013) · doi:10.1007/JHEP09(2013)018
[41] Almheiri, A.; Hartman, T.; Maldacena, J.; Shaghoulian, E.; Tajdini, A., Replica wormholes and the entropy of Hawking radiation, JHEP, 05, 013 (2020) · Zbl 1437.83084 · doi:10.1007/JHEP05(2020)013
[42] A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian and A. Tajdini, The entropy of Hawking radiation, Rev. Mod. Phys.93 (2021) 035002 [arXiv:2006.06872] [INSPIRE].
[43] Jack, I.; Osborn, H., Analogs of the c-theorem for four-dimensional renormalisable field theories, Nucl. Phys. B, 343, 647 (1990) · doi:10.1016/0550-3213(90)90584-Z
[44] Komargodski, Z.; Schwimmer, A., On renormalization group flows in four dimensions, JHEP, 12, 099 (2011) · Zbl 1306.81140 · doi:10.1007/JHEP12(2011)099
[45] H. Casini, E. Testé and G. Torroba, Markov property of the conformal field theory vacuum and the a theorem, Phys. Rev. Lett.118 (2017) 261602 [arXiv:1704.01870] [INSPIRE].
[46] D’Hoker, E.; Kraus, P., Charged magnetic brane solutions in AdS(5) and the fate of the third law of thermodynamics, JHEP, 03, 095 (2010) · Zbl 1271.83047 · doi:10.1007/JHEP03(2010)095
[47] D’Hoker, E.; Kraus, P., Magnetic brane solutions in AdS, JHEP, 10, 088 (2009) · doi:10.1088/1126-6708/2009/10/088
[48] D’Hoker, E.; Kraus, P., Holographic metamagnetism, quantum criticality, and crossover behavior, JHEP, 05, 083 (2010) · Zbl 1287.83029 · doi:10.1007/JHEP05(2010)083
[49] Ammon, M.; Leiber, J.; Macedo, RP, Phase diagram of 4D field theories with chiral anomaly from holography, JHEP, 03, 164 (2016) · Zbl 1388.83159 · doi:10.1007/JHEP03(2016)164
[50] Ammon, M.; Kaminski, M.; Koirala, R.; Leiber, J.; Wu, J., Quasinormal modes of charged magnetic black branes & chiral magnetic transport, JHEP, 04, 067 (2017) · Zbl 1378.81100 · doi:10.1007/JHEP04(2017)067
[51] Ammon, M., Chiral hydrodynamics in strong external magnetic fields, JHEP, 04, 078 (2021) · doi:10.1007/JHEP04(2021)078
[52] Fuini, JF; Yaffe, LG, Far-from-equilibrium dynamics of a strongly coupled non-Abelian plasma with non-zero charge density or external magnetic field, JHEP, 07, 116 (2015) · Zbl 1388.83051 · doi:10.1007/JHEP07(2015)116
[53] de Haro, S.; Solodukhin, SN; Skenderis, K., Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys., 217, 595 (2001) · Zbl 0984.83043 · doi:10.1007/s002200100381
[54] Ávila, D.; Jahnke, V.; Patiño, L., Chaos, diffusivity, and spreading of entanglement in magnetic branes, and the strengthening of the internal interaction, JHEP, 09, 131 (2018) · Zbl 1398.81104 · doi:10.1007/JHEP09(2018)131
[55] Albash, T.; Johnson, CV, Holographic entanglement entropy and renormalization group flow, JHEP, 02, 095 (2012) · Zbl 1309.81140 · doi:10.1007/JHEP02(2012)095
[56] L. Susskind and E. Witten, The holographic bound in Anti-de Sitter space, hep-th/9805114 [INSPIRE].
[57] Grozdanov, S.; Poovuttikul, N., Generalised global symmetries in holography: magnetohydrodynamic waves in a strongly interacting plasma, JHEP, 04, 141 (2019) · doi:10.1007/JHEP04(2019)141
[58] Jankowski, J., Hamilton-Jacobi formulation of holographic entanglement entropy, Eur. Phys. J. ST, 229, 3395 (2020) · doi:10.1140/epjst/e2020-000042-8
[59] Ecker, C.; Grumiller, D.; Stricker, SA, Evolution of holographic entanglement entropy in an anisotropic system, JHEP, 07, 146 (2015) · Zbl 1388.83430 · doi:10.1007/JHEP07(2015)146
[60] Zhang, Z-q; Zhu, X., The effect of magnetic field on holographic entanglement entropy, Eur. Phys. J. A, 55, 18 (2019) · doi:10.1140/epja/i2019-12687-4
[61] P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A42 (2009) 504005 [arXiv:0905.4013] [INSPIRE]. · Zbl 1179.81026
[62] C.-S. Chu and D. Giataganas, c-theorem for anisotropic RG flows from holographic entanglement entropy, Phys. Rev. D101 (2020) 046007 [arXiv:1906.09620] [INSPIRE].
[63] M. Baggioli and D. Giataganas, Detecting topological quantum phase transitions via the c-function, Phys. Rev. D103 (2021) 026009 [arXiv:2007.07273] [INSPIRE].
[64] Cartwright, C.; Harms, B.; Kaminski, M., Topological or rotational non-Abelian gauge fields from Einstein-Skyrme holography, JHEP, 03, 229 (2021) · doi:10.1007/JHEP03(2021)229
[65] M. Rangamani and T. Takayanagi, Holographic entanglement entropy, Springer, Germany (2017) [arXiv:1609.01287] [INSPIRE]. · Zbl 1371.81011
[66] A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett.96 (2006) 110404 [hep-th/0510092] [INSPIRE].
[67] M. Levin and X.-G. Wen, Detecting topological order in a ground state wave function, Phys. Rev. Lett.96 (2006) 110405 [cond-mat/0510613] [INSPIRE].
[68] R.B. Laughlin, Anomalous quantum Hall effect: an incompressible quantum fluid with fractionallycharged excitations, Phys. Rev. Lett.50 (1983) 1395 [INSPIRE].
[69] M. Haque, O. Zozulya and K. Schoutens, Entanglement entropy in fermionic Laughlin states, Phys. Rev. Lett.98 (2007) 060401. · Zbl 1228.81087
[70] Fujita, M.; Li, W.; Ryu, S.; Takayanagi, T., Fractional quantum Hall effect via holography: Chern-Simons, edge states, and hierarchy, JHEP, 06, 066 (2009) · doi:10.1088/1126-6708/2009/06/066
[71] K. Landsteiner, E. Megias, L. Melgar and F. Pena-Benitez, Gravitational anomaly and hydrodynamics, J. Phys. Conf. Ser.343 (2012) 012073 [arXiv:1111.2823] [INSPIRE].
[72] J. Knaute and B. Kämpfer, Holographic entanglement entropy in the QCD phase diagram with a critical point, Phys. Rev. D96 (2017) 106003 [arXiv:1706.02647] [INSPIRE].
[73] G. Vidal, J.I. Latorre, E. Rico and A. Kitaev, Entanglement in quantum critical phenomena, Phys. Rev. Lett.90 (2003) 227902 [quant-ph/0211074] [INSPIRE].
[74] R. Rougemont, R. Critelli, J. Noronha-Hostler, J. Noronha and C. Ratti, Dynamical versus equilibrium properties of the QCD phase transition: a holographic perspective, Phys. Rev. D96 (2017) 014032 [arXiv:1704.05558] [INSPIRE].
[75] Liu, P.; Niu, C.; Wu, J-P, The effect of anisotropy on holographic entanglement entropy and mutual information, Phys. Lett. B, 796, 155 (2019) · doi:10.1016/j.physletb.2019.07.035
[76] Klebanov, IR; Kutasov, D.; Murugan, A., Entanglement as a probe of confinement, Nucl. Phys. B, 796, 274 (2008) · Zbl 1219.81214 · doi:10.1016/j.nuclphysb.2007.12.017
[77] Rost, AW, Entropy landscape of phase formation associated with quantum criticality in Sr_3Ru_2O_7, Science, 325, 1360 (2009) · doi:10.1126/science.1176627
[78] D.A. Abanin and E. Demler, Measuring entanglement entropy of a generic many-body system with a quantum switch, Phys. Rev. Lett.109 (2012) 020504.
[79] Islam, R., Measuring entanglement entropy in a quantum many-body system, Nature, 528, 77 (2015) · doi:10.1038/nature15750
[80] P.M. Chesler and L.G. Yaffe, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett.102 (2009) 211601 [arXiv:0812.2053] [INSPIRE].
[81] R. Baier, A.H. Mueller, D. Schiff and D.T. Son, ’Bottom up’ thermalization in heavy ion collisions, Phys. Lett. B502 (2001) 51 [hep-ph/0009237] [INSPIRE].
[82] Boyd, J., Chebyshev and Fourier spectral methods (2000), U.S.A.: Dover Publications Inc., U.S.A.
[83] Cartwright, C., Entropy production far from equilibrium in a chiral charged plasma in the presence of external electromagnetic fields, JHEP, 01, 041 (2021) · doi:10.1007/JHEP01(2021)041
[84] Cartwright, C.; Kaminski, M., Correlations far from equilibrium in charged strongly coupled fluids subjected to a strong magnetic field, JHEP, 09, 072 (2019) · Zbl 1423.81154 · doi:10.1007/JHEP09(2019)072
[85] W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical recipes — The art of scientific computing, 3^rd edition, Cambridge University Press, Cambridge U.K. (2007).
[86] Wolfram Research Inc., Mathematica, Version 12.1.0.0.
[87] R. Panosso Macedo and M. Ansorg, Axisymmetric fully spectral code for hyperbolic equations, J. Comput. Phys.276 (2014) 357 [arXiv:1402.7343] [INSPIRE]. · Zbl 1349.65523
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.