×

AdS bulk locality from sharp CFT bounds. (English) Zbl 1521.81292

Summary: It is a long-standing conjecture that any CFT with a large central charge and a large gap \(\Delta_{\mathrm{gap}}\) in the spectrum of higher-spin single-trace operators must be dual to a local effective field theory in AdS. We prove a sharp form of this conjecture by deriving numerical bounds on bulk Wilson coefficients in terms of \(\Delta_{\mathrm{gap}}\) using the conformal bootstrap. Our bounds exhibit the scaling in \(\Delta_{\mathrm{gap}}\) expected from dimensional analysis in the bulk. Our main tools are dispersive sum rules that provide a dictionary between CFT dispersion relations and S-matrix dispersion relations in appropriate limits. This dictionary allows us to apply recently-developed flat-space methods to construct positive CFT functionals. We show how \(\mathrm{AdS}_4\) naturally resolves the infrared divergences present in 4D flat-space bounds. Our results imply the validity of twice-subtracted dispersion relations for any S-matrix arising from the flat-space limit of AdS/CFT.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T35 Correspondence, duality, holography (AdS/CFT, gauge/gravity, etc.)
81T12 Effective quantum field theories
81U20 \(S\)-matrix theory, etc. in quantum theory
83C45 Quantization of the gravitational field
83C27 Lattice gravity, Regge calculus and other discrete methods in general relativity and gravitational theory

References:

[1] Adams, A.; Arkani-Hamed, N.; Dubovsky, S.; Nicolis, A.; Rattazzi, R., Causality, analyticity and an IR obstruction to UV completion, JHEP, 10, 014 (2006)
[2] A. Martin, Scattering Theory: Unitarity, Analyticity and Crossing, vol. 3 (1969), [DOI] [INSPIRE].
[3] T.N. Pham and T.N. Truong, Evaluation of the Derivative Quartic Terms of the Meson Chiral Lagrangian From Forward Dispersion Relation, Phys. Rev. D31 (1985) 3027 [INSPIRE].
[4] B. Ananthanarayan, D. Toublan and G. Wanders, Consistency of the chiral pion pion scattering amplitudes with axiomatic constraints, Phys. Rev. D51 (1995) 1093 [hep-ph/9410302] [INSPIRE].
[5] B. Bellazzini, J. Elias Miró, R. Rattazzi, M. Riembau and F. Riva, Positive moments for scattering amplitudes, Phys. Rev. D104 (2021) 036006 [arXiv:2011.00037] [INSPIRE].
[6] Tolley, AJ; Wang, Z-Y; Zhou, S-Y, New positivity bounds from full crossing symmetry, JHEP, 05, 255 (2021)
[7] Arkani-Hamed, N.; Huang, T-C; Huang, Y-T, The EFT-Hedron, JHEP, 05, 259 (2021) · Zbl 1466.81132
[8] Caron-Huot, S.; Van Duong, V., Extremal Effective Field Theories, JHEP, 05, 280 (2021)
[9] A. Sinha and A. Zahed, Crossing Symmetric Dispersion Relations in Quantum Field Theories, Phys. Rev. Lett.126 (2021) 181601 [arXiv:2012.04877] [INSPIRE].
[10] L.-Y. Chiang, Y.-t. Huang, W. Li, L. Rodina and H.-C. Weng, Into the EFThedron and UV constraints from IR consistency, arXiv:2105.02862 [INSPIRE].
[11] Caron-Huot, S.; Mazac, D.; Rastelli, L.; Simmons-Duffin, D., Sharp Boundaries for the Swampland, JHEP, 07, 110 (2021) · Zbl 1468.83031
[12] Camanho, XO; Edelstein, JD; Maldacena, J.; Zhiboedov, A., Causality Constraints on Corrections to the Graviton Three-Point Coupling, JHEP, 02, 020 (2016) · Zbl 1388.83093
[13] Heemskerk, I.; Penedones, J.; Polchinski, J.; Sully, J., Holography from Conformal Field Theory, JHEP, 10, 079 (2009)
[14] Hofman, DM, Higher Derivative Gravity, Causality and Positivity of Energy in a UV complete QFT, Nucl. Phys. B, 823, 174 (2009) · Zbl 1196.81266
[15] Fitzpatrick, AL; Katz, E.; Poland, D.; Simmons-Duffin, D., Effective Conformal Theory and the Flat-Space Limit of AdS, JHEP, 07, 023 (2011) · Zbl 1298.81212
[16] Afkhami-Jeddi, N.; Hartman, T.; Kundu, S.; Tajdini, A., Einstein gravity 3-point functions from conformal field theory, JHEP, 12, 049 (2017) · Zbl 1383.83024
[17] Caron-Huot, S., Analyticity in Spin in Conformal Theories, JHEP, 09, 078 (2017) · Zbl 1382.81173
[18] M. Kulaxizi, A. Parnachev and A. Zhiboedov, Bulk Phase Shift, CFT Regge Limit and Einstein Gravity, JHEP06 (2018) 121 [arXiv:1705.02934] [INSPIRE].
[19] Costa, MS; Hansen, T.; Penedones, J., Bounds for OPE coefficients on the Regge trajectory, JHEP, 10, 197 (2017) · Zbl 1383.81197
[20] Meltzer, D.; Perlmutter, E., Beyond a = c: gravitational couplings to matter and the stress tensor OPE, JHEP, 07, 157 (2018) · Zbl 1395.83092
[21] M. Kologlu, P. Kravchuk, D. Simmons-Duffin and A. Zhiboedov, Shocks, Superconvergence, and a Stringy Equivalence Principle, JHEP11 (2020) 096 [arXiv:1904.05905] [INSPIRE]. · Zbl 1456.83028
[22] Belin, A.; Hofman, DM; Mathys, G., Einstein gravity from ANEC correlators, JHEP, 08, 032 (2019) · Zbl 1421.83010
[23] Maldacena, J.; Simmons-Duffin, D.; Zhiboedov, A., Looking for a bulk point, JHEP, 01, 013 (2017) · Zbl 1373.81335
[24] Kravchuk, P.; Simmons-Duffin, D., Light-ray operators in conformal field theory, JHEP, 11, 102 (2018) · Zbl 1404.81234
[25] Kologlu, M.; Kravchuk, P.; Simmons-Duffin, D.; Zhiboedov, A., The light-ray OPE and conformal colliders, JHEP, 01, 128 (2021) · Zbl 1459.81060
[26] Rattazzi, R.; Rychkov, VS; Tonni, E.; Vichi, A., Bounding scalar operator dimensions in 4D CFT, JHEP, 12, 031 (2008) · Zbl 1329.81324
[27] Mazáč, D.; Rastelli, L.; Zhou, X., A basis of analytic functionals for CFTs in general dimension, JHEP, 08, 140 (2021) · Zbl 1469.81064
[28] Carmi, D.; Caron-Huot, S., A Conformal Dispersion Relation: Correlations from Absorption, JHEP, 09, 009 (2020) · Zbl 1454.81182
[29] J. Penedones, J.A. Silva and A. Zhiboedov, Nonperturbative Mellin Amplitudes: Existence, Properties, Applications, JHEP08 (2020) 031 [arXiv:1912.11100] [INSPIRE].
[30] Carmi, D.; Penedones, J.; Silva, JA; Zhiboedov, A., Applications of dispersive sum rules: ε-expansion and holography, SciPost Phys., 10, 145 (2021)
[31] Caron-Huot, S.; Mazac, D.; Rastelli, L.; Simmons-Duffin, D., Dispersive CFT Sum Rules, JHEP, 05, 243 (2021) · Zbl 1466.81093
[32] R. Gopakumar, A. Sinha and A. Zahed, Crossing Symmetric Dispersion Relations for Mellin Amplitudes, Phys. Rev. Lett.126 (2021) 211602 [arXiv:2101.09017] [INSPIRE].
[33] D. Meltzer, Dispersion Formulas in QFTs, CFTs, and Holography, JHEP05 (2021) 098 [arXiv:2103.15839] [INSPIRE].
[34] Mazac, D., Analytic bounds and emergence of AdS_2physics from the conformal bootstrap, JHEP, 04, 146 (2017) · Zbl 1378.81121
[35] D. Mazac and M.F. Paulos, The analytic functional bootstrap. Part I: 1D CFTs and 2D S-matrices, JHEP02 (2019) 162 [arXiv:1803.10233] [INSPIRE].
[36] D. Mazac and M.F. Paulos, The analytic functional bootstrap. Part II. Natural bases for the crossing equation, JHEP02 (2019) 163 [arXiv:1811.10646] [INSPIRE].
[37] Mazáč, D., A Crossing-Symmetric OPE Inversion Formula, JHEP, 06, 082 (2019) · Zbl 1416.81162
[38] Kaviraj, A.; Paulos, MF, The Functional Bootstrap for Boundary CFT, JHEP, 04, 135 (2020) · Zbl 1436.81114
[39] Mazáč, D.; Rastelli, L.; Zhou, X., An analytic approach to BCFTd, JHEP, 12, 004 (2019) · Zbl 1431.81139
[40] Paulos, MF; Zan, B., A functional approach to the numerical conformal bootstrap, JHEP, 09, 006 (2020) · Zbl 1454.81201
[41] Hartman, T.; Mazáč, D.; Rastelli, L., Sphere Packing and Quantum Gravity, JHEP, 12, 048 (2019) · Zbl 1431.83053
[42] Paulos, MF, Analytic functional bootstrap for CFTs in d > 1, JHEP, 04, 093 (2020) · Zbl 1436.81119
[43] Paulos, MF, Dispersion relations and exact bounds on CFT correlators, JHEP, 08, 166 (2021) · Zbl 1469.81065
[44] C. Itzykson and J.B. Zuber, Quantum Field Theory, International Series In Pure and Applied Physics, McGraw-Hill, New York U.S.A. (1980) [ISBN: 9780070320710].
[45] P. Kravchuk, J. Qiao and S. Rychkov, Distributions in CFT. Part II. Minkowski space, JHEP08 (2021) 094 [arXiv:2104.02090] [INSPIRE].
[46] Cornalba, L.; Costa, MS; Penedones, J.; Schiappa, R., Eikonal Approximation in AdS/CFT: From Shock Waves to Four-Point Functions, JHEP, 08, 019 (2007) · Zbl 1326.81147
[47] Cornalba, L.; Costa, MS; Penedones, J.; Schiappa, R., Eikonal Approximation in AdS/CFT: Conformal Partial Waves and Finite N Four-Point Functions, Nucl. Phys. B, 767, 327 (2007) · Zbl 1326.81147
[48] L. Cornalba, Eikonal methods in AdS/CFT: Regge theory and multi-reggeon exchange, arXiv:0710.5480 [INSPIRE].
[49] Cornalba, L.; Costa, MS; Penedones, J., Eikonal approximation in AdS/CFT: Resumming the gravitational loop expansion, JHEP, 09, 037 (2007)
[50] Costa, MS; Goncalves, V.; Penedones, J., Conformal Regge theory, JHEP, 12, 091 (2012) · Zbl 1397.81297
[51] Li, D.; Meltzer, D.; Poland, D., Conformal Bootstrap in the Regge Limit, JHEP, 12, 013 (2017) · Zbl 1383.81242
[52] Caron-Huot, S.; Sandor, J., Conformal Regge Theory at Finite Boost, JHEP, 05, 059 (2021) · Zbl 1466.81040
[53] S. Kundu, Swampland Conditions for Higher Derivative Couplings from CFT, arXiv:2104.11238 [INSPIRE].
[54] T. Trott, Causality, Unitarity and Symmetry in Effective Field Theory, arXiv:2011.10058 [INSPIRE].
[55] X. Li, H. Xu, C. Yang, C. Zhang and S.-Y. Zhou, Positivity in Multifield Effective Field Theories, Phys. Rev. Lett.127 (2021) 121601 [arXiv:2101.01191] [INSPIRE].
[56] Naqvi, A., Propagators for massive symmetric tensor and p forms in AdS(d + 1), JHEP, 12, 025 (1999) · Zbl 0951.83047
[57] Costa, MS; Gonçalves, V.; Penedones, J., Spinning AdS Propagators, JHEP, 09, 064 (2014) · Zbl 1333.83138
[58] Fitzpatrick, AL; Kaplan, J., Unitarity and the Holographic S-matrix, JHEP, 10, 032 (2012) · Zbl 1397.83037
[59] Hartman, T.; Jain, S.; Kundu, S., Causality Constraints in Conformal Field Theory, JHEP, 05, 099 (2016)
[60] M. Hogervorst and S. Rychkov, Radial Coordinates for Conformal Blocks, Phys. Rev. D87 (2013) 106004 [arXiv:1303.1111] [INSPIRE].
[61] Qiao, J.; Rychkov, S., Cut-touching linear functionals in the conformal bootstrap, JHEP, 06, 076 (2017) · Zbl 1380.81357
[62] M. Gary, S.B. Giddings and J. Penedones, Local bulk S-matrix elements and CFT singularities, Phys. Rev. D80 (2009) 085005 [arXiv:0903.4437] [INSPIRE].
[63] Polyakov, AM, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor. Fiz., 66, 23 (1974)
[64] D. Simmons-Duffin, Projectors, Shadows, and Conformal Blocks, JHEP04 (2014) 146 [arXiv:1204.3894] [INSPIRE]. · Zbl 1333.83125
[65] J. Penedones, High Energy Scattering in the AdS/CFT Correspondence, other thesis, (2007) [arXiv:0712.0802] [INSPIRE].
[66] Witten, E., Analytic Continuation Of Chern-Simons Theory, AMS/IP Stud. Adv. Math., 50, 347 (2011) · Zbl 1337.81106
[67] Witten, E., The Feynman iϵ in String Theory, JHEP, 04, 055 (2015) · Zbl 1388.81610
[68] Afkhami-Jeddi, N.; Hartman, T.; Kundu, S.; Tajdini, A., Shockwaves from the Operator Product Expansion, JHEP, 03, 201 (2019) · Zbl 1414.83020
[69] M.F. Paulos, J. Penedones, J. Toledo, B.C. van Rees and P. Vieira, The S-matrix bootstrap. Part I: QFT in AdS, JHEP11 (2017) 133 [arXiv:1607.06109] [INSPIRE].
[70] Hijano, E., Flat space physics from AdS/CFT, JHEP, 07, 132 (2019) · Zbl 1418.81093
[71] Komatsu, S.; Paulos, MF; Van Rees, BC; Zhao, X., Landau diagrams in AdS and S-matrices from conformal correlators, JHEP, 11, 046 (2020) · Zbl 1456.81455
[72] Li, Y-Z, Notes on flat-space limit of AdS/CFT, JHEP, 09, 027 (2021) · Zbl 1472.81224
[73] Penedones, J., Writing CFT correlation functions as AdS scattering amplitudes, JHEP, 03, 025 (2011) · Zbl 1301.81154
[74] Dolan, FA; Osborn, H., Conformal four point functions and the operator product expansion, Nucl. Phys. B, 599, 459 (2001) · Zbl 1097.81734
[75] Eden, B.; Petkou, AC; Schubert, C.; Sokatchev, E., Partial nonrenormalization of the stress tensor four point function in N = 4 SYM and AdS/CFT, Nucl. Phys. B, 607, 191 (2001) · Zbl 0969.81576
[76] Nirschl, M.; Osborn, H., Superconformal Ward identities and their solution, Nucl. Phys. B, 711, 409 (2005) · Zbl 1109.81350
[77] L. Rastelli and X. Zhou, Mellin amplitudes for AdS_5 × S^5, Phys. Rev. Lett.118 (2017) 091602 [arXiv:1608.06624] [INSPIRE].
[78] D.J. Binder, S.M. Chester, S.S. Pufu and Y. Wang, \( \mathcal{N} = 4\) Super-Yang-Mills correlators at strong coupling from string theory and localization, JHEP12 (2019) 119 [arXiv:1902.06263] [INSPIRE]. · Zbl 1431.81134
[79] N. Gromov, V. Kazakov and P. Vieira, Exact Spectrum of Planar \(\mathcal{N} = 4\) Supersymmetric Yang-Mills Theory: Konishi Dimension at Any Coupling, Phys. Rev. Lett.104 (2010) 211601 [arXiv:0906.4240] [INSPIRE].
[80] Chowdhury, SD; Gadde, A.; Gopalka, T.; Halder, I.; Janagal, L.; Minwalla, S., Classifying and constraining local four photon and four graviton S-matrices, JHEP, 02, 114 (2020) · Zbl 1435.83048
[81] Chandorkar, D.; Chowdhury, SD; Kundu, S.; Minwalla, S., Bounds on Regge growth of flat space scattering from bounds on chaos, JHEP, 05, 143 (2021) · Zbl 1466.81094
[82] S. Mizera, Crossing symmetry in the planar limit, Phys. Rev. D104 (2021) 045003 [arXiv:2104.12776] [INSPIRE].
[83] S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving the 3D Ising Model with the Conformal Bootstrap, Phys. Rev. D86 (2012) 025022 [arXiv:1203.6064] [INSPIRE].
[84] D. Poland, S. Rychkov and A. Vichi, The Conformal Bootstrap: Theory, Numerical Techniques, and Applications, Rev. Mod. Phys.91 (2019) 015002 [arXiv:1805.04405] [INSPIRE].
[85] Simmons-Duffin, D.; Stanford, D.; Witten, E., A spacetime derivation of the Lorentzian OPE inversion formula, JHEP, 07, 085 (2018) · Zbl 1395.81246
[86] F.A. Dolan and H. Osborn, Conformal Partial Waves: Further Mathematical Results, arXiv:1108.6194 [INSPIRE].
[87] C.-H. Chang, M. Kologlu, P. Kravchuk, D. Simmons-Duffin and A. Zhiboedov, Transverse spin in the light-ray OPE, arXiv:2010.04726 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.