×

Holographic thermal correlators revisited. (English) Zbl 1521.81263

Summary: We study 2-point correlation functions for scalar operators in position space through holography including bulk cubic couplings as well as higher curvature couplings to the square of the Weyl tensor. We focus on scalar operators with large conformal dimensions. This allows us to use the geodesic approximation for propagators. In addition to the leading order contribution, captured by geodesics anchored at the insertion points of the operators on the boundary and probing the bulk geometry thoroughly studied in the literature, the first correction is given by a Witten diagram involving both the bulk cubic coupling and the higher curvature couplings. As a result, this correction is proportional to the VEV of a neutral operator \(O_k\) and thus probes the interior of the black hole exactly as in the case studied by M. Grinberg and J. Maldacena [J. High Energy Phys. 2021, No. 3, Paper No. 131, 31 p. (2021; Zbl 1461.83017)]. The form of the correction matches the general expectations in CFT and allows to identify the contributions of \(T^nO_k\) (being \(T^n\) the general contraction of \(n\) energy-momentum tensors) to the 2-point function. This correction is actually the leading term for off-diagonal correlators (i.e. correlators for operators of different conformal dimension), which can then be computed holographically in this way.

MSC:

81T35 Correspondence, duality, holography (AdS/CFT, gauge/gravity, etc.)
83C57 Black holes
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
83E30 String and superstring theories in gravitational theory
81T28 Thermal quantum field theory
83E05 Geometrodynamics and the holographic principle

Citations:

Zbl 1461.83017

References:

[1] Iliesiu, L.; Koloğlu, M.; Mahajan, R.; Perlmutter, E.; Simmons-Duffin, D., The Conformal Bootstrap at Finite Temperature, JHEP, 10, 070 (2018) · Zbl 1402.81226 · doi:10.1007/JHEP10(2018)070
[2] Rodriguez-Gomez, D.; Russo, JG, Correlation functions in finite temperature CFT and black hole singularities, JHEP, 06, 048 (2021) · Zbl 1466.83057 · doi:10.1007/JHEP06(2021)048
[3] Rodriguez-Gomez, D.; Russo, JG, Thermal correlation functions in CFT and factorization, JHEP, 11, 049 (2021) · Zbl 1521.81199 · doi:10.1007/JHEP11(2021)049
[4] R. Karlsson, A. Parnachev and P. Tadić, Thermalization in Large-N CFTs, arXiv:2102.04953 [INSPIRE]. · Zbl 1472.81188
[5] Fitzpatrick, AL; Huang, K-W; Li, D., Probing universalities in d > 2 CFTs: from black holes to shockwaves, JHEP, 11, 139 (2019) · Zbl 1429.81070 · doi:10.1007/JHEP11(2019)139
[6] Fitzpatrick, AL; Huang, K-W, Universal Lowest-Twist in CFTs from Holography, JHEP, 08, 138 (2019) · Zbl 1421.83100 · doi:10.1007/JHEP08(2019)138
[7] Alday, LF; Koloğlu, M.; Zhiboedov, A., Holographic correlators at finite temperature, JHEP, 06, 082 (2021) · Zbl 1466.83091 · doi:10.1007/JHEP06(2021)082
[8] Lee, S.; Minwalla, S.; Rangamani, M.; Seiberg, N., Three point functions of chiral operators in D = 4, N = 4 SYM at large N, Adv. Theor. Math. Phys., 2, 697 (1998) · Zbl 0923.53033 · doi:10.4310/ATMP.1998.v2.n4.a1
[9] Fidkowski, L.; Hubeny, V.; Kleban, M.; Shenker, S., The Black hole singularity in AdS/CFT, JHEP, 02, 014 (2004) · doi:10.1088/1126-6708/2004/02/014
[10] G. Festuccia and H. Liu, Excursions beyond the horizon: Black hole singularities in Yang-Mills theories. I, JHEP04 (2006) 044 [hep-th/0506202] [INSPIRE].
[11] Hubeny, VE; Liu, H.; Rangamani, M., Bulk-cone singularities & signatures of horizon formation in AdS/CFT, JHEP, 01, 009 (2007) · doi:10.1088/1126-6708/2007/01/009
[12] Hubeny, VE, Extremal surfaces as bulk probes in AdS/CFT, JHEP, 07, 093 (2012) · Zbl 1397.83155 · doi:10.1007/JHEP07(2012)093
[13] Grinberg, M.; Maldacena, J., Proper time to the black hole singularity from thermal one-point functions, JHEP, 03, 131 (2021) · Zbl 1461.83017 · doi:10.1007/JHEP03(2021)131
[14] Amado, I.; Hoyos-Badajoz, C., AdS black holes as reflecting cavities, JHEP, 09, 118 (2008) · Zbl 1245.83020 · doi:10.1088/1126-6708/2008/09/118
[15] J. Engelsöy and B. Sundborg, Tidal excitation as mixing in thermal CFT, arXiv:2106.06520 [INSPIRE].
[16] Erdmenger, J.; Hoyos, C.; Lin, S., Time Singularities of Correlators from Dirichlet Conditions in AdS/CFT, JHEP, 03, 085 (2012) · Zbl 1309.81270 · doi:10.1007/JHEP03(2012)085
[17] M. Dodelson and H. Ooguri, Singularities of thermal correlators at strong coupling, Phys. Rev. D103 (2021) 066018 [arXiv:2010.09734] [INSPIRE].
[18] J.L. Cardy, Conformal invariance and universality in finite-size scaling, J. Phys. A17 (1984) L385 [INSPIRE].
[19] Kraus, P.; Maloney, A., A cardy formula for three-point coefficients or how the black hole got its spots, JHEP, 05, 160 (2017) · Zbl 1380.81336 · doi:10.1007/JHEP05(2017)160
[20] Gubser, SS; Klebanov, IR; Tseytlin, AA, Coupling constant dependence in the thermodynamics of N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B, 534, 202 (1998) · Zbl 1078.81563 · doi:10.1016/S0550-3213(98)00514-8
[21] J. Pawełczyk and S. Theisen, AdS_5 × S^5black hole metric at \(\mathcal{O} \)(α′^3), JHEP09 (1998) 010 [hep-th/9808126] [INSPIRE]. · Zbl 0951.83040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.