×

MHD flow study of viscous fluid through a complex wavy curved surface due to bio-mimetic propulsion under porosity and second-order slip effects. (English) Zbl 1521.76917

Summary: The steady laminar flow of viscous fluid from a curved porous domain under a radial magnetic field is considered. The fluid flow by a curved domain is due to peristaltic waves present at the boundary walls. The whole analysis is based on porosity (Darcy number) effects. Moreover, the effects of second-order slip on the rheology analysis are also discussed. Due to the complex nature of the flow regime, we have governed the rheological equations by using curvilinear coordinates in the fixed frame. The physical influence of magnetic (Hartmann number) and porosity (Darcy number) parameters on the rheological features of peristaltic transportation are argued in detailed (in the wave frame). Additionally, in the current study, the complex wavy pattern on both boundary walls of the channel is used. The whole rheological study is based on ancient, but medically valid, assumptions of creeping phenomena and long wavelength assumptions. Analytical solutions of the governing equations are obtained by using the simple integration technique in Mathematica software 11.0. The core motivation of the present analysis is to perceive the physical influence of embedded parameters, such as the dimensionless radius of the curvature parameter, magnetic parameter, porosity parameter, different amplitude ratios of complex peristaltic waves, first- and second-order slip parameters, on the axial velocity, pressure gradient, local wall shear stress, tangential component of the extra-stress tensor, pumping and trapping phenomena.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
76A10 Viscoelastic fluids
Full Text: DOI

References:

[1] Latham, T. W., Fluid motion in a peristaltic pump, MS Thesis (1966)
[2] Yin, F.; Fung, Y. C., Peristaltic Waves in Circular Cylindrical Tubes, 36, 579-587 (1969) · doi:10.1115/1.3564720
[3] Shapiro, A. H.; Jaffrin, M. Y.; Weinberg, S. L., Peristaltic pumping with long wavelength at low Reynolds number, J. Fluid Mech., 37, 799-813 (1969) · doi:10.1017/S0022112069000899
[4] Burns, J. C.; Parkes, T., Peristaltic motion, J. Fluid Mech., 29, 731-743 (1967) · doi:10.1017/S0022112067001156
[5] Yin, F. C P.; Fung, Y. C., Comparison of theory and experiment in peristaltic transport, J. Fluid Mech., 47, 93-112 (1971) · doi:10.1017/S0022112071000958
[6] Jaffrin, M. Y.; Shapiro, A. H., Peristaltic pumping, Ann. Rev. Fluid Mech., 3, 13-37 (1971) · doi:10.1146/annurev.fl.03.010171.000305
[7] Huang, W.; Wang, X., Ferrofluids lubrication: a status report, Lubr. Sci., 28, 3-26 (2016) · doi:10.1002/ls.1291
[8] Saima, G.; Khan, S. B.; Rehman, I. U.; Khan, M. A.; Khan, M. I., A comprehensive review of magnetic nanomaterials modern day theranostics, Frontiers Mater., 6, 179 (2019) · doi:10.3389/fmats.2019.00179
[9] Bach, D.; Schmich, F.; Masselter, T.; Speck, T., A review of selected pumping systems in nature and engineering—potential biomimetic concepts for improving displacement pumps and pulsation damping, Bioinsp. Biomim., 10, 051001 (2015) · doi:10.1088/1748-3190/10/5/051001
[10] Mitamura, Y.; Arioka, S.; Sakota, D.; Sekine, K.; Azegami, M., Application of a magnetic fluid seal to rotary blood pumps, J. Phys.: Condens. Matter, 20, 204145 (2008) · doi:10.1088/0953-8984/20/20/204145
[11] Tripathi, D.; Bég, O. A., Magnetohydrodynamic peristaltic flow of a couple stress fluid through coaxial channels containing a porous medium, J. Mech. Med. Biol., 12, 1250088 (2012) · doi:10.1142/S0219519412500881
[12] Ali, N.; Hussain, Q.; Hayat, T.; Asghar, S., Slip effects on the peristaltic transport of MHD fluid with variable viscosity, Phys. Lett. A, 372, 1477-1489 (2008) · Zbl 1217.76100 · doi:10.1016/j.physleta.2007.09.061
[13] Hayat, T.; Ali, N., Peristaltically induced motion of a MHD third grade fluid in a deformable tube, Physica A, 370, 225-239 (2006) · doi:10.1016/j.physa.2006.02.029
[14] Hayat, T.; Ali, N., Peristaltic motion of a Jeffrey fluid under the effect of a magnetic field in a tube, Commun. Nonlinear Sci. Numer. Simul., 13, 1343-1352 (2008) · Zbl 1221.76016 · doi:10.1016/j.cnsns.2006.12.009
[15] Hayat, T.; Ali, N.; Asghar, S., An analysis of peristaltic transport for flow of a Jeffrey fluid, Acta Mech., 193, 101-112 (2007) · Zbl 1120.76002 · doi:10.1007/s00707-007-0468-2
[16] Abd-Alla, A. M.; Abo-Dahab, S. M.; Kilicman, A., Peristaltic flow of a Jeffrey fluid under the effect of radially varying magnetic field in a tube with endoscope, J. Magn. Magn. Mater., 384, 79-86 (2015) · doi:10.1016/j.jmmm.2015.02.017
[17] Bég, O. A.; Rashidi, M. M., Multi-step DTM simulation of magneto-peristaltic flow of a conducting Williamson viscoelastic fluid, Int. J. Appl. Math. Mech., 9, 22-40 (2013)
[18] Hayat, T.; Hussain, Q.; Ali, N., Influence of partial slip on the peristaltic flow in a porous medium, Physica A, 387, 3399-3409 (2008) · doi:10.1016/j.physa.2008.02.040
[19] Alsaedi, A.; Ali, N.; Tripathi, D.; Hayat, T., Peristaltic flow of couple stress fluid through uniform porous medium, Appl. Math. Mech., 35, 469-480 (2014) · doi:10.1007/s10483-014-1805-8
[20] Hayat, T.; Ali, N.; Asghar, S., Hall effects on peristaltic flow of a Maxwell fluid in a porous medium, Phys. Lett. A, 363, 397-403 (2007) · Zbl 1197.76126 · doi:10.1016/j.physleta.2006.10.104
[21] Guo, X.; Zhou, J.; Xie, H.; Jiang, Z., MHD peristaltic flow of fractional Jeffrey model through porous medium, Math. Probl. Eng., 2018 (2018) · Zbl 1427.76284 · doi:10.1155/2018/6014082
[22] Lakshminarayana, P.; Vajravelu, K.; Sucharitha, G.; Sreenadh, S., Peristaltic slip flow of a Bingham fluid in an inclined porous conduit with Joule heating, Appl. Math. Nonlinear Sci., 3 (2018) · doi:10.21042/AMNS.2018.1.00005
[23] Afifi, N. A S.; Gad, N. S., Interaction of peristaltic flow with pulsatile fluid through a porous medium, Appl. Math. Comput., 142, 167-176 (2003) · Zbl 1127.76385 · doi:10.1016/S0096-3003(02)00291-6
[24] Liu, Y.; Guo, B., Effects of second-order slip on the flow of a fractional Maxwell MHD fluid, J. Assoc. Arab Univ. Basic Appl. Sci., 24, 232-241 (2017) · doi:10.1016/j.jaubas.2017.04.001
[25] Aly, E. H.; Ebaid, A., Effect of the velocity second slip boundary condition on the peristaltic flow of nanofluids in an asymmetric channel: exact solution, Abstr. Appl. Anal., 2014, 191876 (2014) · Zbl 1470.76121 · doi:10.1155/2014/191876
[26] Zhu, J.; Yang, D.; Zheng, L.; Zhang, X., Effects of second order velocity slip and nanoparticles migration on flow of Buongiorno nanofluid, Appl. Math. Lett., 52, 183-191 (2016) · Zbl 1330.76107 · doi:10.1016/j.aml.2015.09.003
[27] Hamdan, M. A.; Al-Nimr, M. A.; Hammoudeh, V. A., Effect of second order velocity-slip/temperature-jump on basic gaseous fluctuating micro- flows, J. Fluids Eng., 132 (2010) · doi:10.1115/1.4001970
[28] Sravanthi, C. S., Second order velocity slip and thermal jump of Cu-water nanofluid over a cone in the presence of nonlinear radiation and nonuniform heat source/sink using homotopy analysis method, Heat Transfer—Asian Res., 49, 86-102 (2020) · doi:10.1002/htj.21600
[29] Sato, H.; Kawai, T.; Fujita, T.; Okabe, M., Two dimensional peristaltic flow in curved channels, Trans. Japan Soc. Mech. Eng. B, 66, 679-685 (2000) · doi:10.1299/kikaib.66.679
[30] Ali, N.; Sajid, M.; Hayat, T., Long wavelength flow analysis in a curved channel, Zeitschrift fur Naturforschung A, 65a, 191-196 (2010) · doi:10.1515/zna-2010-0306
[31] Ali, N.; Sajid, M.; Abbas, Z.; Javed, T., Non-Newtonian fluid flow induced by peristaltic waves in a curved channel, Eur. J. Mech. B, 29, 387-394 (2010) · Zbl 1196.76014 · doi:10.1016/j.euromechflu.2010.04.002
[32] Anum, T.; Hayat, T.; Alsaedi, A.; Ahmad, B., Numerical simulation for peristalsis of Carreau-Yasuda nanofluid in curved channel with mixed convection and porous space, PLoS One, 12 (2017) · doi:10.1371/journal.pone.0170029
[33] Hayat, T.; Ahmed, B.; Abbasi, F. M.; Alsaedi, A., Peristalsis of nanofluid through curved channel with Hall and Ohmic heating effects, J. Cent. South Univ., 26, 2543-2553 (2019) · doi:10.1007/s11771-019-4193-5
[34] Ali, N.; Javid, K.; Sajid, M.; Beg, O. A., Numerical simulation of peristaltic flow of a biorheological fluid with shear-dependent viscosity in a curved channel, Comput. Methods BioMech. BioMed. Eng., 19, 614-627 (2016) · doi:10.1080/10255842.2015.1055257
[35] Ali, N.; Javid, K.; Sajid, M.; Zaman, A.; Hayat, T., Numerical simulations of Oldroyd 8-constant fluid flow and heat transfer in a curved channel, Int. J. Heat and Mass Transfer, 94, 500-508 (2016) · doi:10.1016/j.ijheatmasstransfer.2015.11.066
[36] Ali, N.; Sajid, M.; Javid, K.; Ahmed, R., Peristaltic flow of Rabinowitsch fluid in a curved channel: mathematical analysis revisited, Z. Naturforsch. A, 72, 245-251 (2017) · doi:10.1515/zna-2016-0334
[37] Khurram, J.; Ali, N.; Asghar, Z., Rheological and magnetic effects on a fluid flow in a curved channel with different peristaltic wave profiles, J. Braz. Soc. Mech. Sci. Eng., 41, 483 (2019) · doi:10.1007/s40430-019-1993-3
[38] Fidelis, O. N.; Asghar, S.; Charreh, D., Magnetohydrodynamic flow through a wavy curved channel, AIP Adv., 10, 035114 (2020) · doi:10.1063/1.5142214
[39] Khurram, J.; Ali, N.; Asghar, Z., Numerical simulation of the peristaltic motion of a viscous fluid through a complex wavy non-uniform channel with magnetohydrodynamic effects, Phys. Scr., 94, 115226 (2019) · doi:10.1088/1402-4896/ab2efb
[40] Khurram, J.; Khan, S. U-D; Hassan, M.; Saeed, U.; Rizvi, S. T R.; Khan, S. U-D, Peristaltic transportation of tluid through simple and complex wavy non-uniform channels: a bio-engineering application, Int. J Multiscale Comp. Eng., 17, 623-638 (2019)
[41] Gowda, R. P.; Kumar, R. N.; Aldalbahi, A.; Issakhov, A.; Prasannakumara, B. C.; Rahimi-Gorji, M.; Rahaman, M., Thermophoretic particle deposition in time-dependent flow of hybrid nanofluid over rotating and vertically upward/downward moving disk, Surf. Interfaces, 22, 100864 (2020) · doi:10.1016/j.surfin.2020.100864
[42] Roja, A.; Gireesha, B. J.; Prasannakumara, B. C., MHD micropolar nanofluid flow through an inclined channel with entropy generation subjected to radiative heat flux, viscous dissipation and multiple slip effects, Multidiscipline Modeling Mater. Struct., 16, 1475-1496 (2020) · doi:10.1108/MMMS-12-2019-0235
[43] Gireesha, B. J.; Shankaralingappa, B. M.; Prasannakumar, B. C.; Nagaraja, B., MHD flow and melting heat transfer of dusty Casson fluid over a stretching sheet with Cattaneo-Christov heat flux model, Int. J. Ambient Energy, 1-9 (2020) · doi:10.1080/01430750.2020.1785938
[44] Sajjad, H.; Ijaz, N.; Zeeshan, A.; Li, Y-Z, Magneto-hydrodynamics of a solid-liquid two-phase fluid in rotating channel due to peristaltic wavy movement, Int. J. Numer. Methods Heat Fluid Flow, 30, 2501-2516 (2020) · doi:10.1108/HFF-02-2019-0131
[45] Nouman, I.; Riaz, A.; Zeeshan, A.; Ellahi, R.; Sait, S. M., Buoyancy driven flow with gas-liquid coatings of peristaltic bubbly flow in elastic walls, Coatings, 10, 115 (2020) · doi:10.3390/coatings10020115
[46] Hanan, A.; Riaz, A.; Razaq, A.; Saleem, N.; Zeeshan, A.; Bhatti, M. M., Effects of double diffusion convection on third grade nanofluid through a curved compliant peristaltic channel, Coatings, 10, 154 (2020) · doi:10.3390/coatings10020154
[47] Riaz, A.; Zeeshan, A.; Bhatti, M. M.; Ellahi, R., Peristaltic propulsion of Jeffrey nano-liquid and heat transfer through a symmetrical duct with moving walls in a porous medium, Physica A, 545, 123788 (2020) · doi:10.1016/j.physa.2019.123788
[48] Zeeshan, A.; Bhatti, M. M.; Muhammad, T.; Zhang, L., Magnetized peristaltic particle-fluid propulsion with Hall and ion slip effects through a permeable channel, Physica A, 550, 123999 (2020) · doi:10.1016/j.physa.2019.123999
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.