×

Development of accurate and robust genuinely two-dimensional HLL-type Riemann solver for compressible flows. (English) Zbl 1521.76426

Summary: When using the conventional direction splitting method to calculate multidimensional high speed gasdynamical flows, Riemann solvers capable of resolving contact surface and shear wave accurately will suffer from different forms of shock instability, such as the notorious carbuncle phenomenon. The stability analysis shows that the lack of dissipation in the direction transverse to the shock front leads to the shock instability of low-dissipation HLLEM solver. To overcome this defect, an accurate and carbuncle-free genuinely two-dimensional HLL-type Riemann solver is proposed. Using Zha-Bilgen splitting method, the flux vector of two-dimensional Euler equations is split into the convective flux and pressure flux. An algorithm similar to AUSM+ scheme is adopted to calculate the convective flux and the pressure flux is calculated by the low-dissipation HLLEM scheme. Following Balsara’s idea, the genuinely two-dimensional properties of the new solver are achieved by solving the two-dimensional Riemann problem that considers transversal features of the flow at each vertex of the cell interface. Numerical results of benchmark tests demonstrate that the new solver has higher resolution and better robustness than the conventional HLLEM solver implemented in dimension by dimension.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
76N15 Gas dynamics (general theory)

Software:

AUSMPW+; AUSM; RIEMANN; HLLE
Full Text: DOI

References:

[1] Roe, P. L., Approximate Riemann solvers, parameter vectors, and difference schemes, J Comput Phys, 43, 357-372 (1981) · Zbl 0474.65066
[2] Harten, A.; Lax, P. D.; van Leer, B., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev, 25, 35-61 (1983) · Zbl 0565.65051
[3] Einfeldt, B., On Godunov-type methods for gas dynamics, SIAM J Numer Anal, 25, 294-318 (1988) · Zbl 0642.76088
[4] Einfeldt, B.; Munz, C.-D.; Roe, P. L.; Sjögreen, B., On Godunov-type methods near low densities, J Comput Phys, 92, 273-295 (1991) · Zbl 0709.76102
[5] Toro, E. F.; Spruce, M.; Speares, W., Restoration of the contact surface in the HLL-riemann solver, Shock Waves, 4, 25-34 (1994) · Zbl 0811.76053
[6] Liou, M. S., A sequel to AUSM: AUSM+, J Comput Phys, 129, 364-382 (1996) · Zbl 0870.76049
[7] Kim, K. H.; Kim, C.; Rho, O. H., Methods for the accurate computations of hypersonic flows i: AUSMPW+ scheme, J Comput Phys, 174, 38-80 (2001) · Zbl 1106.76421
[8] Liou, M. S., A sequel to AUSM, part II: AUSM+-up for all speeds, J Comput Phys, 214, 137-170 (2006) · Zbl 1137.76344
[9] Qu, F.; Sun, D.; Yan, C., A new flux splitting scheme for the euler equations II: E-AUSMPWAS for all speeds, Commun Nonlinear Sci Numer Simul, 57, 58-79 (2018) · Zbl 1460.76640
[10] Simon, S.; Mandal, J. C., A cure for numerical shock instability in HLLC Riemann solver using antidiffusion control, Comput Fluids, 174, 144-166 (2018) · Zbl 1410.76334
[11] Mandal, J. C.; Panwar, V., Robust HLL-type Riemann solver capable of resolving contact discontinuity, Comput Fluids, 63, 148-164 (2012) · Zbl 1365.76164
[12] Xie, W.; Li, W.; Li, H., On numerical instabilities of Godunov-type schemes for strong shocks, J Comput Phys, 350, 607-637 (2017) · Zbl 1380.76073
[13] Park, S. H.; Kwon, J. H., On the dissipation mechanism of Godunov-type schemes, J Comput Phys, 188, 524-542 (2003) · Zbl 1022.76037
[14] Dumbser, M.; Balsara, D. S., A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems, J Comput Phys, 304, 275-319 (2016) · Zbl 1349.76603
[15] Quirk, J. J., A contribution to the great Riemann solver debate, Int J Numer Methods Fluids, 18, 555-574 (1994) · Zbl 0794.76061
[16] Kim, S. D.; Lee, B. J.; Lee, H. J.; Jeung, I. S., Robust HLLC Riemann solver with weighted average flux scheme for strong shock, J Comput Phys, 228, 7634-7642 (2009) · Zbl 1391.76556
[17] Huang, K.; Wu, H.; Yu, H.; Yan, D., Cures for numerical shock instability in HLLC solver, Int J Numer Methods Fluids, 65, 1026-1038 (2011) · Zbl 1428.76120
[18] Hu, L.; Yuan, L., Analysis of numerical shock instability and a hybrid curing method, Appl Math Mech Chin Ed, 36, 482-493 (2015)
[19] Simon, S.; Mandal, J. C., A simple cure for numerical shock instability in the HLLC Riemann solver, J Comput Phys, 378, 477-496 (2019) · Zbl 1416.76160
[20] Rodionov, A. V., Artificial viscosity in Godunov-type schemes to cure the carbuncle phenomenon, J Comput Phys, 345, 308-329 (2017) · Zbl 1378.76059
[21] Rodionov, A. V., Artificial viscosity to cure the shock instability in high-order Godunov-type schemes, Comput Fluids, 190, 77-97 (2019) · Zbl 1496.76091
[22] Chen, S.; Yan, C.; Lin, B., Affordable shock-stable item for Godunov-type schemes against carbuncle phenomenon, J Comput Phys, 373, 662-672 (2018) · Zbl 1416.76142
[23] Chen, Z.; Huang, X.; Ren, Y.-X.; Zhou, M., General procedure for Riemann solver to eliminate carbuncle and shock instability, AIAA J, 55, 2002-2015 (2017)
[24] Collela, P., Multidimensional upwind methods for hyperbolic conservation laws, J Comput Phys, 87, 171-200 (1990) · Zbl 0694.65041
[25] Brio, M.; Zakharian, A. R.; Webb, G. M., Two dimensional Riemann solver for euler equations for gas dynamics, J Comput Phys, 167, 177-195 (2001) · Zbl 1043.76042
[26] Rumsey, C. L.; van Leer, B.; Roe, P. L., A multidimensional flux function with application to the euler and Navier-Stokes equations, J Comput Phys, 105, 306-323 (1993) · Zbl 0767.76039
[27] Saltzman, J., An unsplit 3d upwind method for hyperbolic conservation laws, J Comput Phys, 115, 153-168 (1994) · Zbl 0813.65111
[28] LeVeque, R. J., Wave propagation algorithms for multi-dimensional hyperbolic systems, J Comput Phys, 131, 327-353 (1997) · Zbl 0872.76075
[29] Billet, S. J.; Toro, E. F., On WAF-type schemes for multidimensional hyperbolic conservation laws, J Comput Phys, 130, 1-24 (1997) · Zbl 0873.65088
[30] Wendroff, B., A two-dimensional HLLE Riemann solver and associated Godunov-type difference scheme for gas dynamics, Comput Math Appl, 38, 175-185 (1999) · Zbl 0984.76064
[31] Fey, M., Multidimensional upwinding. Part I. The method of transport for solving the euler equations, J Comput Phys, 143, 159-180 (1998) · Zbl 0932.76050
[32] Balsara, D. S., Multidimensional HLLE Riemann solver: application to euler and magnetohydrodynamic flows, J Comput Phys, 229, 1970-1993 (2010) · Zbl 1303.76140
[33] Balsara, D. S., Three dimensional HLL Riemann solver for conservation laws on structured meshes; application to euler and magnetohydrodynamic flows, J Comput Phys, 295, 1-23 (2015) · Zbl 1349.76584
[34] Balsara, D. S., A two-dimensional HLLC Riemann solver for conservation laws: application to euler and magnetohydrodynamic flows, J Comput Phys, 231, 7476-7503 (2012) · Zbl 1284.76261
[35] Balsara, D. S., Multidimensional Riemann problem with self-similar internal structure. Part I-application to hyperbolic conservation laws on structured meshes, J Comput Phys, 277, 163-200 (2014) · Zbl 1349.76303
[36] Balsara, D. S.; Dumbser, M., Multidimensional Riemann problem with self-similar internal structure. Part II-application to hyperbolic conservation laws on unstructured meshes, J Comput Phys, 287, 269-292 (2015) · Zbl 1351.76091
[37] Gallardo, J. M.; Schneider, K. A.; Castro, M. J., On a class of two-dimensional incomplete Riemann solvers, J Comput Phys, 386, 541-567 (2019) · Zbl 1452.76114
[38] Zha, G.-C.; Bilgen, E., Numerical solutions of euler equations by using a new flux vector splitting scheme, Int J Numer Methods Fluids, 17, 115-144 (1993) · Zbl 0779.76067
[39] Mandal, J. C.; Sharma, V., A genuinely multidimensional convective-pressure flux split Riemann solver for euler equations, J Comput Phys, 297, 669-688 (2015) · Zbl 1349.76630
[40] Qu, F.; Sun, D.; Bai, J., A new genuinely two-dimensional Riemann solver for multidimensional Euler and Navier-Stokes equations, Comput Phys Commun, 243, 1-11 (2019) · Zbl 07674810
[41] Hu, L.; Yuan, L., A genuinely multidimensional Riemann solver based on the TV splitting, Appl Math Mech Chin Ed, 38, 243-264 (2017)
[42] Qu, F.; Sun, D.; Bai, J.; Yan, C., A genuinely two-dimensional Riemann solver for compressible flows in curvilinear coordinates, J Comput Phys, 386, 47-63 (2019) · Zbl 1452.76131
[43] Gressier, J.; Moschetta, J. M., Robustness versus accuracy in shock-wave computations, Int J Numer Methods Fluids, 33, 313-332 (2000) · Zbl 0980.76072
[44] Dumbser, M.; Moschetta, J.-M.; Gressier, J., A matrix stability analysis of the carbuncle phenomenon, J Comput Phys, 197, 647-670 (2004) · Zbl 1079.76607
[45] Kemm, F., Heuristical and numerical considerations for the carbuncle phenomenon, Appl Math Comput, 320, 596-613 (2018) · Zbl 1426.76200
[46] Mandal, J. C.; Arvind, N., High resolution schemes for genuinely two-dimensional HLLE Riemann solver, Prog Comput Fluid Dy, 14, 205-220 (2014) · Zbl 1447.65052
[47] Simon, S.; Mandal, J. C., Strategies to cure numerical shock instability in the HLLEM Riemann solver, Int J Numer Methods Fluids, 89, 533-569 (2019)
[48] Woodward, P.; Colella, P., The numerical simulation of two-dimensional fluid flow with strong shocks, J Comput Phys, 54, 115-173 (1984) · Zbl 0573.76057
[49] San, O.; Kara, K., Numerical assessments of high-order accurate shock capturing schemes: Kelvin-Helmholtz type vortical structures in high-resolutions, Comput Fluids, 89, 254-276 (2014) · Zbl 1391.76287
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.