×

Numerical investigation of impulsively generated high-speed jet for dynamic stall suppression. (English) Zbl 1521.76050

Summary: A computational study of impulsively actuated high-speed jets for dynamic stall suppression is conducted to control the aerodynamic performance of a lifting body. Jet flows are applied to the VR-12 airfoil under dynamic stall conditions. The current study demonstrates that an energetic interaction between the high-momentum jet and dynamic stall vortex is able to suppress two critical stall events, i.e., the moment and lift stalls, in the dynamic stall phenomena. The controlling mechanism of such stall events is explored using the single-jet flow under various actuation timings in a pitch period. Based on the derived mechanism of the stall control, multiple jets are utilized to suppress the severe hysteresis of the dynamic stall, because the single actuation could control only one of the stall events and not the both. Consequently, the numerical study with multiple-jet actuation reveals that the actuation of a few (3–5) jets near the lift and moment stall events could mitigate the dynamic stall as effectively as a large number (nearly 20) of jets over the entire pitch period. Furthermore, a higher actuation frequency provides an additional control benefit for dynamic stall suppression because of concentrated pulses around the two critical stall events.

MSC:

76B10 Jets and cavities, cavitation, free-streamline theory, water-entry problems, airfoil and hydrofoil theory, sloshing
76G25 General aerodynamics and subsonic flows
Full Text: DOI

References:

[1] Gad-el-Hak, M., Flow control - passive, active, and reactive flow management (2007), Cambridge University Press · Zbl 0968.76001
[2] Ashill, P. R.; Fulker, J. L.; Hackett, K. C., A review of recent developments in flow control, Aeronaut J, 109, 1095, 205-232 (2005)
[3] Cattafesta, L. N.; Sheplak, M., Actuators for active flow control, Annu Rev Fluid Mech, 43, 1, 247-272 (2011) · Zbl 1299.76108
[4] Müller-Vahl, H. F.; Strangfeld, C.; Nayeri, C. N.; Paschereit, C. O.; Greenblatt, D., Control of thick airfoil, deep dynamic stall using steady blowing, AIAA J, 53, 2, 277-295 (2015)
[5] Santra, S.; Greenblatt, D., Dynamic stall control model for pitching airfoils with slot blowing, AIAA J, 59, 1, 400-404 (2021)
[6] Deparday, J.; Mulleners, K., Modeling the interplay between the shear layer and leading edge suction during dynamic stall, Phys Fluids, 31, 10, Article 107104 pp. (2019)
[7] Feng, L.-H.; Li, Z.-Y.; Chen, Y.-L., Lift enhancement strategy and mechanism for a plunging airfoil based on vortex control, Phys Fluids, 32, 8, Article 087116 pp. (2020)
[8] Post, M. L.; Corke, T. C., Separation control using plasma actuators: Dynamic stall vortex control on oscillating airfoil, AIAA J, 44, 12, 3125-3135 (2006)
[9] Yu, H.; Zheng, J., Numerical investigation of control of dynamic stall over a NACA0015 airfoil using dielectric barrier discharge plasma actuators, Phys Fluids, 32, 3, Article 035103 pp. (2020)
[10] Huang, G.; Dai, Y.; Yang, C.; Wu, Y.; Xia, Y., Effect of dielectric barrier discharge plasma actuator on the dynamic moment behavior of pitching airfoil at low Reynolds number, Phys Fluids, 33, 4, Article 043603 pp. (2021)
[11] Rehman, A.; Kontis, K., Synthetic jet control effectiveness on stationary and pitching airfoils, J Aircr, 43, 6, 1782-1789 (2006)
[12] Taylor, K.; Amitay, M., Dynamic stall process on a finite span model and its control via synthetic jet actuators, Phys Fluids, 27, 7, Article 077104 pp. (2015)
[13] Crittenden T, Glezer A, Funk R, Parekh D. Combustion-Driven Jet Actuators for Flow Control. In: 15th AIAA computational fluid dynamics conference. Anaheim, CA, USA, AIAA-2001-2768; 2001, http://dx.doi.org/10.2514/6.2001-2768.
[14] Crittenden, T. M.; Woo, G. T.K.; Glezer, A., Combustion-powered actuation for transitory flow control, AIAA J, 56, 9, 3414-3435 (2018)
[15] Woo, G. T.K.; Crittenden, T.; Glezer, A., Transitory separation control over a stalled airfoil, (39th AIAA fluid dynamics conference (2009), American Institute of Aeronautics and Astronautics: American Institute of Aeronautics and Astronautics San Antonio, TX, USA, AIAA-2009-4281)
[16] Brzozowski, D. P.; K. Woo, G. T.; Culp, J. R.; Glezer, A., Transient separation control using pulse-combustion actuation, AIAA J, 48, 11, 2482-2490 (2010)
[17] Matalanis, C. G.; Min, B.-Y.; Bowles, P. O.; Jee, S.; Wake, B. E.; Crittenden, T. M., Combustion-powered actuation for dynamic-stall suppression: High-Mach simulations and low-Mach experiments, AIAA J, 53, 8, 2151-2163 (2015)
[18] Matalanis, C. G.; Bowles, P. O.; Jee, S.; Min, B.-Y.; Kuczek, A. E.; Croteau, P. F., Dynamic stall suppression using combustion-powered actuation (COMPACT)Tech. Rep. NASA/CR-2016-219336 (2016), NASA Langley Research Center; Hampton, VA, United States
[19] Matalanis, C. G.; Bowles, P. O.; Min, B.-Y.; Jee, S.; Kuczek, A. E.; Wake, B. E., High-speed experiments on combustion-powered actuation for dynamic stall suppression, AIAA J, 3001-3015 (2017)
[20] Woo, G. T.K.; Glezer, A.; Yorish, S.; Crittenden, T. M., Pulsed actuation control of flow separation on a ROBIN rotorcraft fuselage, AIAA J, 54, 10, 3274-3289 (2016)
[21] Jee S, Lopez Mejia OD, Moser RD. Numerical Study of Impulse Actuation for Stall Control. In: ASME fluids engineering division summer meeting, ASME-JSME-KSME 2011 joint fluids engineering conference, no. 44403. Hamamatsu, Japan; 2011, p. 3019-31. http://dx.doi.org/10.1115/ajk2011-13002.
[22] Jee S, Bowles P, Matalanis C, Min B-Y, Wake B, Crittenden T, et al. Computations of Combustion-Powered Actuation for Dynamic Stall Suppression. In: AHS 72nd annual forum. West Palm Beach, Florida, USA; 2016.
[23] Kim T, Kim J, Kim S, Lee J, Jee S. Unsteady Impulsive Jet Applied to a Stalled Airfoil. In: Tenth international conference on computational fluid dynamics, no. ICCFD10-2018-245. Barcelona, Spain; 2018.
[24] Kim, T.; Kim, J.; Kim, M.; Lee, J.; Jee, S., Dynamic stall control with impulsive jet, (AIAA aviation 2019 forum (2019)), AIAA-3587, URL https://arc.aiaa.org/doi/abs/10.2514/6.2019-3587
[25] Darabi, A.; Wygnanski, I., Active management of naturally separated flow over a solid surface. Part 1. The forced reattachment process, J Fluid Mech, 510, 105-129 (2004) · Zbl 1123.76303
[26] Darabi, A.; Wygnanski, I., Active management of naturally separated flow over a solid surface. Part 2. The separation process, J Fluid Mech, 510, 131-144 (2004) · Zbl 1123.76302
[27] Visbal, M. R.; Garmann, D. J., Analysis of dynamic stall on a pitching airfoil using high-fidelity large-eddy simulations, AIAA J, 56, 1, 46-63 (2018)
[28] Benton, S. I.; Visbal, M. R., The onset of dynamic stall at a high, transitional Reynolds number, J Fluid Mech, 861, 860-885 (2019) · Zbl 1415.76528
[29] Garmann, D. J.; Visbal, M. R.; Orkwis, P. D., Three-dimensional flow structure and aerodynamic loading on a revolving wing, Phys Fluids, 25, 3, Article 034101 pp. (2013)
[30] Rosti, M. E.; Omidyeganeh, M.; Pinelli, A., Direct numerical simulation of the flow around an aerofoil in ramp-up motion, Phys Fluids, 28, 2, Article 025106 pp. (2016)
[31] Park, J. W.; Ryu, J.; Sung, H. J., Effects of the shape of an inverted flag on its flapping dynamics, Phys Fluids, 31, 2, Article 021904 pp. (2019)
[32] Rodríguez, I.; Lehmkuhl, O.; Borrell, R.; Oliva, A., Direct numerical simulation of a NACA0012 in full stall, Int J Heat Fluid Flow, 43, 194-203 (2013), URL http://www.sciencedirect.com/science/article/pii/S0142727X13000891
[33] Ekaterinaris, J. A.; Platzer, M. F., Computational prediction of airfoil dynamic stall, Prog Aerosp Sci, 33, 11, 759-846 (1998), URL http://www.sciencedirect.com/science/article/pii/S0376042197000122
[34] Ekaterinaris, J. A.; Menter, F. R., Computation of oscillating airfoil flows with one- and two-equation turbulence models, AIAA J, 32, 12, 2359-2365 (1994)
[35] Barakos, G. N.; Drikakis, D., Unsteady separated flows over manoeuvring lifting surfaces, Phil Trans R Soc A, 358, 3279-3291 (2000) · Zbl 1099.76525
[36] Antoniadis, A.; Drikakis, D.; Zhong, B.; Barakos, G.; Steijl, R.; Biava, M., Assessment of CFD methods against experimental flow measurements for helicopter flows, Aerosp Sci Technol, 19, 1, 86-100 (2012)
[37] Srinivasan, G. R.; Ekaterinaris, J. A.; McCroskey, W. J., Evaluation of turbulence models for unsteady flows of an oscillating airfoil, Comput & Fluids, 24, 7, 833-861 (1995), URL http://www.sciencedirect.com/science/article/pii/0045793095000166 · Zbl 0856.76051
[38] Geissler, W.; Dietz, G.; Mai, H., Dynamic stall on a supercritical airfoil, Aerosp Sci Technol, 9, 5, 390-399 (2005), URL http://www.sciencedirect.com/science/article/pii/S1270963805000477 · Zbl 1067.76503
[39] Geissler, W.; Haselmeyer, H., Investigation of dynamic stall onset, Aerosp Sci Technol, 10, 7, 590-600 (2006)
[40] Geissler, W.; van der Wall, B. G., Dynamic stall control on flapping wing airfoils, Aerosp Sci Technol, 62, 1-10 (2017), URL http://www.sciencedirect.com/science/article/pii/S127096381631238X
[41] Kim, J.; Park, Y. M.; Lee, J.; Kim, T.; Kim, M.; Lim, J., Numerical investigation of jet angle effect on airfoil stall control, Appl Sci, 9, 15 (2019), URL https://www.mdpi.com/2076-3417/9/15/2960
[42] Kim, T.; Kim, S.; Lim, J.; Kim, J.; Jee, S., Computational study of Mach number effects on dynamic stall, (Proceedings of the ASME-JSME-KSME 2019 8th joint fluids engineering conference, Vol. 59025 (2019)), V001T01A014
[43] Kim, T.; Kim, S.; Lim, J.; Jee, S., Numerical investigation of compressibility effect on dynamic stall, Aerosp Sci Technol, 105, Article 105918 pp. (2020)
[44] Sutherland, W., III. The viscosity of gases and molecular force, Lond, Edinburgh, Dublin Philos Mag J Sci, 36, 223, 507-531 (1893) · JFM 25.1544.01
[45] Krist, S. L.; Biedron, R. T.; Rumsey, C. L., CFL3D user’s manual (Version 5.0)Tech. Rep. NASA/TM-1998-208444 (1998), NASA
[46] Roe, P. L., Approximate Riemann solvers, parameter vectors, and difference schemes, J Comput Phys, 43, 2, 357-372 (1981) · Zbl 0474.65066
[47] Anderson, W. K., Implicit multigrid algorithms for the three-dimensional flux split Euler equations (1986), Mississippi State University. Department of Aerospace Engineering, [Ph.D. thesis]
[48] Anderson, W. K.; Thomas, J. L.; Whitfield, D. L., Multigrid acceleration of the flux-split Euler equations, AIAA J, 26, 6, 649-654 (1988)
[49] Spalart, P. R.; Allmaras, S. R., A one-equation turbulence model for aerodynamic flows, (30th Aerospace sciences meeting and exhibit (1992), American Institute of Aeronautics and Astronautics: American Institute of Aeronautics and Astronautics Reno, NV, USA, AIAA-1992-439)
[50] Rumsey, C. L., Apparent transition behavior of widely-used turbulence models, Int J Heat Fluid Flow, 28, 6, 1460-1471 (2007)
[51] Spalart, P. R.; Rumsey, C. L., Effective inflow conditions for turbulence models in aerodynamic calculations, AIAA J, 45, 10, 2544-2553 (2007)
[52] Pastor-Barsi C, Arrington A. Aero-Thermal Calibration of the NASA Glenn Icing Research Tunnel (2012 Test). In: 4th AIAA atmospheric and space environments conference. 2012, p. 2934.
[53] Gardner, A. D.; Richter, K., Effect of the model-sidewall connection for a dynamic stall airfoil experiment, J Aircr, 1-6 (2019)
[54] Hirsch, C.; Tartinville, B., Reynolds-averaged Navier-Stokes modelling for industrial applications and some challenging issues, Int J Comput Fluid Dyn, 23, 295-303 (2009) · Zbl 1184.76701
[55] Rumsey, C. L., Successes and challenges for flow control simulations, Int J Flow Control, 1, 1-27 (2009)
[56] Slotnick, J.; Khodadoust, A.; Alonso, J.; Darmofal, D.; Gropp, W.; Lurie, E., CFD vision 2030 study: Aa path to revolutionary computational aerosciencesTech. Rep. NASA/CR-2014-218178 (2014), NASA Langley Research Center; Hampton, VA, United States
[57] Greenblatt, D.; Wygnanski, I. J., The control of flow separation by periodic excitation, Prog Aerosp Sci, 36, 7, 487-545 (2000)
[58] Carusone, A.; Sicot, C.; Bonnet, J.-P.; Borée, J., Transient dynamical effects induced by single-pulse fluidic actuation over an airfoil, Exp Fluids, 62, 2, 1-16 (2021)
[59] Woo, G. T.K.; Glezer, A., Controlled transitory stall on a pitching airfoil using pulsed actuation, Exp Fluids, 54, 1507 (2013)
[60] Ramasamy, M.; Wilson, J.; McCroskey, W.; Martin, P., Characterizing cycle-to-cycle variations in dynamic stall measurements, J Am Helicopter Soc, 63, 2, 1-24 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.