×

Resonance interaction of flow-conveying nanotubes under forced vibration. (English) Zbl 1521.74090

Summary: Exploring the size-dependent nonlinear behavior and its related stability phenomena of nano-fluid-solid interaction under multi-source excitation is of great significance to the rational design of nano-electromechanical systems that are required to maintain in stable states. The size-dependent nonlinear combined resonance of nanotubes conveying pulsatile flow while subjected to external forced excitation with two immovable ends is studied. As the flow-carrying nanotubes are subjected to large deformation under two simultaneous excitations, nonlinear stiffening effects arising from curvature and boundary tensile hardening are investigated in detail. A Zhang-Fu’s higher-order beam theory to model the displacement field of the nanotubes is modified to take accurate nonlinear curvature into account. Key parameters which are related to size dependency such as slip-flow, surface effect, nonlocal stress and strain gradient on the nonlinear dynamic behavior are comprehensively studied. A two-step perturbation technique followed by incremental harmonic balance method is employed to attain the bifurcation diagram; its accuracy is confirmed by a convergence analysis and validation using conventional Runge-Kutta method. The bifurcation diagrams which exhibit both weak and strong interactions are shown under different excitation amplitudes. As expected, the nonlinear combined resonance is not a simple superposition of two vibration responses; the interaction of the two excitations yields different bifurcation topologies with different jump and hysteresis paths. Also, it is revealed that size-dependency of both nano-solid and nano-fluid can not only affect the resonance band and resonance amplitude but also lead to the shift between strong and weak interactions.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74H10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of dynamical problems in solid mechanics
74S20 Finite difference methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Schrlau, MG; Falls, EM; Ziober, BL; Bau, HH, Carbon nanopipettes for cell probes and intracellular injection, Nanotechnology, 19, 1 (2007) · doi:10.1088/0957-4484/19/01/015101
[2] Yoon, J.; Ru, CQ; Mioduchowski, A., Vibration and instability of carbon nanotubes conveying fluid, Compos. Sci. Technol., 65, 9, 1326-1336 (2005) · doi:10.1016/j.compscitech.2004.12.002
[3] Reddy, CD; Lu, C.; Rajendran, S.; Liew, KM, Free vibration analysis of fluid-conveying single-walled carbon nanotubes, Appl. Phys. Lett., 90, 13 (2007) · doi:10.1063/1.2717554
[4] Bahaadini, R.; Saidi, AR; Hosseini, M., On dynamics of nanotubes conveying nanoflow, Int. J. Eng. Sci., 123, 181-196 (2018) · Zbl 1423.74456 · doi:10.1016/j.ijengsci.2017.11.010
[5] Nematollahi, MA; Jamali, B.; Hosseini, M., Fluid velocity and mass ratio identification of piezoelectric nanotube conveying fluid using inverse analysis, Acta Mech., 231, 2, 683-700 (2020) · Zbl 1435.74021 · doi:10.1007/s00707-019-02554-0
[6] Dini, A.; Hosseini, M.; Nematollahi, MA, On the size-dependent dynamics of curved single-walled carbon nanotubes conveying fluid based on nonlocal theory, Acta Mech., 232, 12, 4729-4745 (2021) · Zbl 1479.74046 · doi:10.1007/s00707-021-03081-7
[7] Shaat, M.; Javed, U.; Faroughi, S., Wettability and confinement size effects on stability of water conveying nanotubes, Sci. Rep., 10, 1, 1-11 (2020) · doi:10.1038/s41598-020-74398-x
[8] Sadeghi-Goughari, M.; Jeon, S.; Kwon, HJ, Fluid structure interaction of cantilever micro and nanotubes conveying magnetic fluid with small size effects under a transverse magnetic field, J. Fluids Struct., 94 (2020) · doi:10.1016/j.jfluidstructs.2020.102951
[9] Ghane, M.; Saidi, AR; Bahaadini, R., Vibration of fluid-conveying nanotubes subjected to magnetic field based on the thin-walled Timoshenko beam theory, Appl. Math. Model., 80, 65-83 (2020) · Zbl 1481.74257 · doi:10.1016/j.apm.2019.11.034
[10] Amiri, A.; Vesal, R.; Talebitooti, R., Flexoelectric and surface effects on size-dependent flow-induced vibration and instability analysis of fluid-conveying nanotubes based on flexoelectricity beam model, Int. J. Mech. Sci., 156, 474-485 (2019) · doi:10.1016/j.ijmecsci.2019.04.018
[11] Pirmoradian, M.; Torkan, E.; Toghraie, D., Study on size-dependent vibration and stability of DWCNTs subjected to moving nanoparticles and embedded on two-parameter foundations, Mech. Mater., 142 (2020) · doi:10.1016/j.mechmat.2019.103279
[12] Jin, Q.; Ren, Y., Nonlinear size-dependent dynamic instability and local bifurcation of FG nanotubes transporting oscillatory fluids, Acta. Mech. Sin., 38, 3 (2022) · doi:10.1007/s10409-021-09075-x
[13] Fan, X., Wu, N., Liu, Y., Guo, Q.: Resonance system reliability and sensitivity analysis method for axially FGM pipes conveying fluid with adaptive Kriging model. Acta Mech. Solida Sin. (2022). doi:10.1007/s10338-022-00333-4
[14] Avramov, K.; Kabylbekova, B., Bifurcation behavior and chaotic self-sustained vibrations of cantilevered nanotube conveying fluid, Acta Mech., 230, 3235-3258 (2019) · Zbl 1428.74116 · doi:10.1007/s00707-019-02450-7
[15] Jin, Q.; Ren, Y., Nonlinear size-dependent bending and forced vibration of internal flow-inducing pre-and post-buckled FG nanotubes, Commun. Nonlinear Sci. Numer. Simul., 104 (2022) · Zbl 1477.74042 · doi:10.1016/j.cnsns.2021.106044
[16] Farajpour, A.; Farokhi, H.; Ghayesh, MH; Hussain, S., Nonlinear mechanics of nanotubes conveying fluid, Int. J. Eng. Sci., 133, 132-143 (2018) · Zbl 1423.74126 · doi:10.1016/j.ijengsci.2018.08.009
[17] Jin, Q.; Ren, Y.; Jiang, H.; Li, L., A higher-order size-dependent beam model for nonlinear mechanics of fluid-conveying FG nanotubes incorporating surface energy, Compos. Struct., 269 (2021) · doi:10.1016/j.compstruct.2021.114022
[18] Mahmoudpour, E.; Esmaeili, M., Nonlinear free and forced vibration of carbon nanotubes conveying magnetic nanoflow and subjected to a longitudinal magnetic field using stress-driven nonlocal integral model, Thin-Walled Struct., 166 (2021) · doi:10.1016/j.tws.2021.108134
[19] Soltani, P.; Farshidianfar, A., Periodic solution for nonlinear vibration of a fluid-conveying carbon nanotube, based on the nonlocal continuum theory by energy balance method, Appl. Math. Model., 36, 8, 3712-3724 (2012) · Zbl 1252.74030 · doi:10.1016/j.apm.2011.11.002
[20] Askari, H.; Esmailzadeh, E., Forced vibration of fluid conveying carbon nanotubes considering thermal effect and nonlinear foundations, Compos. B Eng., 113, 31-43 (2017) · doi:10.1016/j.compositesb.2016.12.046
[21] Ghazavi, MR; Molki, H., Nonlinear analysis of the micro/nanotube conveying fluid based on second strain gradient theory, Appl. Math. Model., 60, 77-93 (2018) · Zbl 1480.76045 · doi:10.1016/j.apm.2018.03.013
[22] Oyelade, AO; Ehigie, JO; Oyediran, AA, Nonlinear forced vibrations of a slightly curved nanotube conveying fluid based on the nonlocal strain gradient elasticity theory, Microfluid. Nanofluid., 25, 95 (2021) · doi:10.1007/s10404-021-02493-0
[23] Hosseini, SHS; Ghadiri, M., Nonlinear dynamics of fluid conveying double-walled nanotubes incorporating surface effect: A bifurcation analysis, Appl. Math. Model., 92, 594-611 (2021) · Zbl 1481.74153 · doi:10.1016/j.apm.2020.11.033
[24] Lotfan, S.; Fathi, R.; Ettefagh, MM, Size-dependent nonlinear vibration analysis of carbon nanotubes conveying multiphase flow, Int. J. Mech. Sci., 115, 723-735 (2016) · doi:10.1016/j.ijmecsci.2016.07.034
[25] Ghayesh, MH; Farokhi, H.; Farajpour, A., Chaos in fluid-conveying NSGT nanotubes with geometric imperfections, Appl. Math. Model., 74, 708-730 (2019) · Zbl 1481.76086 · doi:10.1016/j.apm.2019.04.053
[26] Farajpour, A.; Farokhi, H.; Ghayesh, MH, Chaotic motion analysis of fluid-conveying viscoelastic nanotubes, Eur. J. Mech. A/Solids, 74, 281-296 (2019) · Zbl 1406.74347 · doi:10.1016/j.euromechsol.2018.11.012
[27] Ghayesh, MH; Farajpour, A.; Farokhi, H., Effect of flow pulsations on chaos in nanotubes using nonlocal strain gradient theory, Commun. Nonlinear Sci. Numer. Simul., 83 (2020) · Zbl 1451.74110 · doi:10.1016/j.cnsns.2019.105090
[28] Hu, W.; Deng, Z., Chaos in embedded fluid-conveying single-walled carbon nanotube under transverse harmonic load series, Nonlinear Dyn., 79, 1, 325-333 (2015) · doi:10.1007/s11071-014-1666-9
[29] Ghayesh, MH; Farokhi, H.; Farajpour, A., Global dynamics of fluid conveying nanotubes, Int. J. Eng. Sci., 135, 37-57 (2019) · Zbl 1423.76469 · doi:10.1016/j.ijengsci.2018.11.003
[30] Saadatnia, Z.; Esmailzadeh, E., Nonlinear harmonic vibration analysis of fluid-conveying piezoelectric-layered nanotubes, Compos. B Eng., 123, 193-209 (2017) · doi:10.1016/j.compositesb.2017.05.012
[31] Mao, XY; Ding, H.; Chen, LQ, Dynamics of a super-critically axially moving beam with parametric and forced resonance, Nonlinear Dyn., 89, 2, 1475-1487 (2017) · doi:10.1007/s11071-017-3529-7
[32] Bolotin, VV, The dynamic stability of elastic systems, Am. J. Phys., 33, 9, 752-753 (1965) · doi:10.1119/1.1972245
[33] Fu, Y.; Zhong, J.; Shao, X.; Chen, Y., Thermal postbuckling analysis of functionally graded tubes based on a refined beam model, Int. J. Mech. Sci., 96, 58-64 (2015) · doi:10.1016/j.ijmecsci.2015.03.019
[34] Hu, X.; Jin, Q.; Fu, X., Parametric resonance of shear deformable nanotubes: A novel higher-order model incorporating nonlinearity from both curvature and inertia, Eur. J. Mech. A/Solids, 2022, 96 (2022) · Zbl 1498.74027 · doi:10.1016/j.euromechsol.2022.104693
[35] Lu, L.; Guo, X.; Zhao, J., Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory, Int. J. Eng. Sci., 116, 12-24 (2017) · Zbl 1423.74499 · doi:10.1016/j.ijengsci.2017.03.006
[36] Lim, CW; Zhang, G.; Reddy, J., A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation, J. Mech. Phys. Solids, 78, 298-313 (2015) · Zbl 1349.74016 · doi:10.1016/j.jmps.2015.02.001
[37] Li, ZH; Wang, YQ, Vibration and stability analysis of lipid nanotubes conveying fluid, Microfluid. Nanofluid., 23, 11, 1-12 (2019) · doi:10.1007/s10404-019-2290-2
[38] Gurtin, ME; Murdoch, AI, Surface stress in solids, Int. J. Solids Struct., 14, 6, 431-440 (1978) · Zbl 0377.73001 · doi:10.1016/0020-7683(78)90008-2
[39] Mogilevskaya, SG; Zemlyanova, AY; Mantič, V., The use of the Gurtin-Murdoch theory for modeling mechanical processes in composites with two-dimensional reinforcements, Compos. Sci. Technol., 210 (2021) · doi:10.1016/j.compscitech.2021.108751
[40] Beskok, A.; Karniadakis, GE, Report: a model for flows in channels, pipes, and ducts at micro and nano scales, Microscale Thermophys. Eng., 3, 1, 43-77 (1999) · doi:10.1080/108939599199864
[41] Tang, Y., Wang, G., Ding, Q.: Nonlinear fractional-order dynamic stability of fluid-conveying pipes constituted by the viscoelastic materials with time-dependent velocity. Acta Mech. Solida Sin. 35, 733-745 (2022)
[42] Jin, Q.; Hu, X.; Ren, Y.; Jiang, H., On static and dynamic snap-throughs of the imperfect post-buckled FG-GRC sandwich beams, J. Sound Vib., 489 (2020) · doi:10.1016/j.jsv.2020.115684
[43] Sorokin, VS; Thomsen, JJ, Effects of weak nonlinearity on the dispersion relation and frequency band-gaps of a periodic Bernoulli-Euler beam, Proc. R. Soc. A Math. Phys. Eng. Sci., 472, 2186, 20150751 (2016)
[44] Shen, HS, A two-step perturbation method in nonlinear analysis of beams, plates and shells (2013), John Wiley & Sons · Zbl 1292.74001 · doi:10.1002/9781118649893
[45] Shen, HS; Li, C.; Reddy, JN, Large amplitude vibration of FG-CNTRC laminated cylindrical shells with negative Poisson’s ratio, Comput. Methods Appl. Mech. Eng., 360 (2020) · Zbl 1441.74091 · doi:10.1016/j.cma.2019.112727
[46] Ren, Y.; Li, L.; Jin, Q.; Nie, L.; Peng, F., Vibration and snapthrough of fluid-conveying graphene-reinforced composite pipes under low-velocity impact, AIAA J., 59, 12, 5091-5105 (2021) · doi:10.2514/1.J060628
[47] Babaei, H.; Kiani, Y.; Eslami, MR, Vibrational behavior of thermally pre-/post-buckled FG-CNTRC beams on a nonlinear elastic foundation: a two-step perturbation technique, Acta Mech., 232, 10, 3897-3915 (2021) · Zbl 1492.74047 · doi:10.1007/s00707-021-03027-z
[48] Fan, Y.; Wang, H., The effects of matrix cracks on the nonlinear bending and thermal postbuckling of shear deformable laminated beams containing carbon nanotube reinforced composite layers and piezoelectric fiber reinforced composite layers, Compos. B Eng., 106, 28-41 (2016) · doi:10.1016/j.compositesb.2016.09.005
[49] Jin, Q.; Ren, Y., Dynamic instability mechanism of post-buckled FG nanotubes transporting pulsatile flow: size-dependence and local/global dynamics, Appl. Math. Model., 111, 139-159 (2022) · Zbl 1505.74093 · doi:10.1016/j.apm.2022.06.025
[50] Karličić, D.; Cajić, M.; Paunović, S.; Adhikari, S., Periodic response of a nonlinear axially moving beam with a nonlinear energy sink and piezoelectric attachment, Int. J. Mech. Sci., 195 (2021) · doi:10.1016/j.ijmecsci.2020.106230
[51] Huang, JL; Zhu, WD, Nonlinear dynamics of a high-dimensional model of a rotating Euler-Bernoulli beam under the gravity load, J. Appl. Mech., 81, 10 (2014) · doi:10.1115/1.4028046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.