×

A variety of globally stable periodic orbits in permutation binary neural networks. (English) Zbl 1521.37023

Summary: The permutation binary neural networks are characterized by global permutation connections and local binary connections. Although the parameter space is not large, the networks exhibit various binary periodic orbits. Since analysis of all the periodic orbits is not easy, we focus on globally stable binary periodic orbits such that almost all initial points fall into the orbits. For efficient analysis, we define the standard permutation connection that represents multiple equivalent permutation connections. Applying the brute force attack to 7-dimensional networks, we present the main result: a list of standard permutation connections for all the globally stable periodic orbits. These results will be developed into detailed analysis of the networks and its engineering applications.

MSC:

37C27 Periodic orbits of vector fields and flows
37C75 Stability theory for smooth dynamical systems

Software:

MOEA/D

References:

[1] M. K. Adachi Aihara, Associative dynamics in a chaotic neural network, Neural Networks, 10, 83-98 (1997) · Zbl 1423.68396 · doi:10.1016/S0893-6080(96)00061-5
[2] S. T. T. Anzai Suzuki Saito, Dynamic binary neural networks with time-variant parameters and switching of desired periodic orbits, Neurocomputing, 457, 357-364 (2021) · doi:10.1016/j.neucom.2021.06.054
[3] L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C. R. Mirasso and I. Fischer, Information processing using a single dynamical node as complex system, Nat. Commun., 2 (2011), Article number: 468.
[4] B. K. Bose, Neural network applications in power electronics and motor drives - an introduction and perspective, IEEE Trans. Ind. Electron., 54, 14-33 (2007) · doi:10.1109/TIE.2006.888683
[5] D. R. S. I. S. P. P. Chowdhury Basu Gupta Chaudhuri, Design of CAECC - cellular automata based error correcting code,, IEEE Trans. Comput., 43, 759-764 (1994) · Zbl 1068.68673 · doi:10.1109/12.286310
[6] J. Dong, E. Börve, M. Rafayelyan and M. Unser, Asymptotic stability in reservoir computing, in: Proc. of IJCNN, 2022, 3774.
[7] W. Holderbaum, Application of neural network to hybrid systems with binary inputs, IEEE Trans. Neural Netw., 18, 1254-1261 (2007) · doi:10.1109/TNN.2007.899181
[8] J. J. Hopfield, Neural networks and physical systems with emergent collective computation abilities,, Proc. Nat. Acad. Sci., 79, 2554-2558 (1982) · Zbl 1369.92007 · doi:10.1073/pnas.79.8.2554
[9] J. J. Hopfield and D. W. Tank, “Neural” computation of decisions optimization problems,, Biological Cybern., 52 (1985), 141-152. · Zbl 0572.68041
[10] N. T. Horimoto Saito, Analysis of digital spike maps based on bifurcating neurons, NOLTA, IEICE, 3, 596-605 (2012) · doi:10.1587/nolta.3.596
[11] S. T. Koyama Saito, Guaranteed storage and stabilization of desired binary periodic orbits in three-layer dynamic binary neural networks,, Neurocomputing, 416, 12-18 (2020) · doi:10.1016/j.neucom.2020.01.105
[12] M. A. L. M. Lodi Shilnikov Storace, Design principles for central pattern generators with preset rhythms,, IEEE Trans. Neural Netw. Learn. Syst., 31, 3658-3669 (2020) · doi:10.1109/TNNLS.2019.2945637
[13] X. Y. X. Y. Z. Ma Yu Li Qi Zhu, A survey of weight vector adjustment methods for decomposition-based multiobjective evolutionary algorithms,, IEEE Trans. Evol. Comput., 24, 636-649 (2020) · doi:10.1109/TEVC.2020.2978158
[14] E. Ott, Chaos in Dynamical Systems (2002) · Zbl 1006.37001 · doi:10.1017/CBO9780511803260
[15] F. Pasemann, Characterization of periodic attractors in neural ring networks,, Neural Networks, 8, 421-429 (1995) · doi:10.1016/0893-6080(94)00085-Z
[16] A. A. A. Poorghanad Sadr Kashanipour, Generating high quality pseudo random number using evolutionary methods,, Proc. IEEE/CIS, 9, 331-335 (2008) · doi:10.1109/CIS.2008.220
[17] T. Suzuki and T. Saito, Synthesis of three-layer dynamic binary neural networks for control of hexapod walking robots, in: Proc. of the IEEE/CNNA, (2021).
[18] G. R. T. T. D. Y. A. Tanaka Nakane Takeuchi Yamane Nakano Katayama Hirose, Spatially arranged sparse recurrent neural networks for energy efficient associative memory,, IEEE Trans. Neural Netw. Learn. Syst., 31, 24-38 (2020) · doi:10.1109/TNNLS.2019.2899344
[19] G. T. J. B. R. N. S. H. D. A. Tanaka Yamane Héroux Nakane Kanazawa Takeda Numata Nakano Hirose, Recent advances in physical reservoir computing: a review., Neural Networks, 115, 100-123 (2019) · doi:10.1016/j.neunet.2019.03.005
[20] H. Y. T. Uchida Oishi Saito, A simple digital spiking neural network: Synchronization and spike-train approximation,, Discrete Contin. Dyn. Syst. Ser. S, 14, 1479-1494 (2021) · Zbl 1485.92013 · doi:10.3934/dcdss.2020374
[21] H. T. T. Udagawa Okano Saito, Permutation binary neural networks: Analysis of periodic orbits and its applications, Discrete Contin. Dyn. Syst. Ser. B, 28, 748-764 (2023) · Zbl 1506.37018 · doi:10.3934/dcdsb.2022097
[22] W. J. S. Wada Kuroiwa Nara, Completely reproducible description of digital sound data with cellular automata,, Phys. Lett. A, 306, 110-115 (2002) · Zbl 1005.68108 · doi:10.1016/S0375-9601(01)00610-7
[23] P. W. J. J. C. L. A. Wheeler Rodriguez Clare Empringham Weinstein, Matrix converters: A technology review,, IEEE Tran. Ind. Electron, 49, 276-288 (2002) · doi:10.1109/41.993260
[24] S. Wolfram, Cellular Automata and Complexity: Collected Papers (2018)
[25] Q. L. Zhang Hui, MOEA/D: A multiobjective evolutionary algorithm based on decomposition,, IEEE Trans. Evol. Comput., 11, 712-731 (2007) · doi:10.1109/TEVC.2007.892759
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.