×

Nonlinear semigroups for nonlocal conservation laws. (English) Zbl 1521.35083

Summary: We investigate a class of nonlocal conservation laws in several space dimensions, where the continuum average of weighted nonlocal interactions are considered over a finite horizon. We establish well-posedness for a broad class of flux functions and initial data via semigroup theory in Banach spaces and, in particular, via the celebrated Crandall-Liggett Theorem. We also show that the unique mild solution satisfies a Kružkov-type nonlocal entropy inequality. Similarly to the local case, we demonstrate an efficient way of proving various desirable qualitative properties of the unique solution.

MSC:

35F25 Initial value problems for nonlinear first-order PDEs
35Q49 Transport equations
45K05 Integro-partial differential equations
47H20 Semigroups of nonlinear operators

References:

[1] Alimov, S., Yuldasheva, A.: Solvability of Singular Equations of Peridynamics on Two-Dimensional Periodic Structures. Journal of Peridynamics and Nonlocal Modeling, (2021)
[2] Bayen, A.; Friedrich, J.; Keimer, A.; Pflug, L.; Veeravalli, T., Modeling multilane traffic with moving obstacles by nonlocal balance laws, SIAM J. Appl. Dyn. Syst., 21, 2, 1495-1538 (2022) · Zbl 1497.35315 · doi:10.1137/20M1366654
[3] Bobaru, F., Foster, J.T., Geubelle, P.H., Silling, S.A.: Handbook of peridynamic modeling. CRC press, (2016) · Zbl 1351.74001
[4] Bothe, D.: Nonlinear Evolutions in Banach Spaces - Existence and Qualitative Theory with Applications to Reaction-Diffusion-Systems. habilitation, Paderborn University, (1999)
[5] Bothe, D., Nonlinear evolutions with Carathéodory forcing, J. Evol. Equ., 3, 3, 375-394 (2003) · Zbl 1044.47050 · doi:10.1007/s00028-003-0099-5
[6] Brezis, H., Functional Analysis (2010), New York: Sobolev Spaces and Partial Differential Equations. Springer-Verlag, New York
[7] Calderón, A.-P.: Lebesgue spaces of differentiable functions and distributions. In Proc. Sympos. Pure Math., volume IV, pages 33-49. American Mathematical Society, Providence, R.I., (1961) · Zbl 0195.41103
[8] Chiarello, F.A., Goatin, P.: Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel. ESAIM: Mathematical Modelling and Numerical Analysis, 52:163-180, (2018) · Zbl 1395.35142
[9] Colombo, M.; Crippa, G.; Spinolo, LV, On the singular local limit for conservation laws with nonlocal fluxes, Arch. Ratl. Mech. Anal., 233, 1131-1167 (2019) · Zbl 1415.35188 · doi:10.1007/s00205-019-01375-8
[10] Conway, E.; Smoller, J., Global solutions of the Cauchy problem for quasi-linear first-order equations in several space variables, Commun. Pure Appl. Math., 19, 95-105 (1966) · Zbl 0138.34701 · doi:10.1002/cpa.3160190107
[11] Crandall, MG, The semigroup approach to first order quasilinear equations in several space variables, Israel J. Math., 12, 2, 108-132 (1972) · Zbl 0246.35018 · doi:10.1007/BF02764657
[12] Crandall, M.G., Benilan, P.: Regularizing effects of homogeneous evolution equations. Technical report, Wisconsin Univ-Madison Mathematics Research Center, (1980) · Zbl 0556.35067
[13] Crandall, MG; Liggett, TM, Generation of semi-groups of nonlinear transformations on general banach spaces, Am. J. Math., 93, 2, 265-298 (1971) · Zbl 0226.47038 · doi:10.2307/2373376
[14] Crandall, MG; Lions, P-L, Viscosity solutions of Hamilton-Jacobi equations, Trans. Am. Math. Soc., 277, 1, 1 (1983) · Zbl 0599.35024 · doi:10.1090/S0002-9947-1983-0690039-8
[15] Crandall, MG; Majda, A., Monotone difference approximations for scalar conservation laws, Math. Comput., 34, 149, 1-21 (1980) · Zbl 0423.65052 · doi:10.1090/S0025-5718-1980-0551288-3
[16] Deimling, K., Nonlinear Functional Analysis (1985), Berlin Heidelberg: Springer-Verlag, Berlin Heidelberg · Zbl 0559.47040 · doi:10.1007/978-3-662-00547-7
[17] Douglis, A., On calculating weak solutions of quasi-linear, first-order partial differential equations, Contributions Differ. Equ., 1, 59-94 (1963) · Zbl 0196.50105
[18] Du, Q., Kamm, J.R., Lehoucq, R.B., Parks, M.L.: A new approach for a nonlocal, nonlinear conservation law SIAM Journal on Applied Mathematics, 72(1):464-487, (2012) · Zbl 1248.35121
[19] Du, Q.; Gunzburger, M.; Lehoucq, RB; Zhou, K., A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws, Math. Models Methods Appl. Sci., 23, 3, 493-540 (2013) · Zbl 1266.26020 · doi:10.1142/S0218202512500546
[20] Du, Q., Huang, Z., LeFloch, P.G.: Nonlocal conservation laws. A new class of monotonicity-preserving models. SIAM Journal on Numerical Analysis, 55(5):2465-2489, (2017) · Zbl 1377.35196
[21] Du, Q.; Huang, Z., Numerical solution of a scalar one-dimensional monotonicity-preserving nonlocal nonlinear conservation law, J. Math. Res. Appl., 37, 1, 1-18 (2017) · Zbl 1389.35223
[22] Evans, LC, Partial Differential Equations (2010), Providence, R.I.: American Mathematical Society, Providence, R.I. · Zbl 1194.35001
[23] Fjordholm, US; Ruf, AM, Second-order accurate TVD numerical methods for nonlocal nonlinear conservation laws, SIAM J. Nume. Anal., 59, 3, 1920-1945 (2021) · Zbl 1473.65103
[24] Goatin, P.; Scialanga, S., Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity, Netw. Heterogeneous Media, 11, 1, 107-121 (2016) · Zbl 1350.35117 · doi:10.3934/nhm.2016.11.107
[25] Gunzburger, M.; Lehoucq, RB, A nonlocal vector calculus with application to nonlocal boundary value problems, Multiscale Model. Simul., 8, 5, 1581-1598 (2010) · Zbl 1210.35057 · doi:10.1137/090766607
[26] Katiyar, A.; Foster, JT; Ouchi, H.; Sharma, MM, A peridynamic formulation of pressure driven convective fluid transport in porous media, J. Comput. Phys., 261, 209-229 (2014) · Zbl 1349.76819 · doi:10.1016/j.jcp.2013.12.039
[27] Keimer, A.; Plfug, L., Existence, uniqueness and regularity results on nonlocal balance laws, J. Differ. Equ., 263, 7, 4023-4069 (2017) · Zbl 1372.35186 · doi:10.1016/j.jde.2017.05.015
[28] Keimer, A.; Leugering, G.; Sarkar, T., Analysis of a system of nonlocal balance laws with weighted work in progress, J. Hyperbolic Differ. Equ., 15, 3, 375-406 (2018) · Zbl 1437.35488 · doi:10.1142/S0219891618500145
[29] Keimer, A.; Pflug, L., On approximation of local conservation laws by nonlocal conservation laws, J. Math. Anal. Appl., 475, 2, 1927-1955 (2019) · Zbl 1428.35213 · doi:10.1016/j.jmaa.2019.03.063
[30] Kobayashi, Y.; Kobayasi, K., On perturbation of non-linear equations in banach spaces, Publ. Res. Inst. Math. Sci., 12, 3, 709-725 (1977) · Zbl 0378.47035 · doi:10.2977/prims/1195190376
[31] Kružkov, S., First order quasilinear equations in several independent variables, Mat. Sb., 81, 2, 228-255 (1970) · Zbl 0202.11203
[32] LeVeque, RJ, Numerical Methods for Conservation Laws (1991), Basel: Birkhäuser, Basel · Zbl 0847.65053
[33] Lions, P-L, Generalized Solutions of Hamilton-Jacobi Equations (1982), London: Pitman, London · Zbl 0497.35001
[34] Lyngaas, I.: Using RBF-Generated Quadrature Rules to Solve Nonlocal Continuum Models dissertation, Florida State University, (2018) · Zbl 1395.35230
[35] Miyadera, I., Nonlinear Semigroups (1992), Providence, R.I.: American Mathematical Society, Providence, R.I. · Zbl 0766.47039 · doi:10.1090/mmono/109
[36] Nochetto, RH; Savaré, G., Nonlinear evolution governed by accretive operators in banach spaces: error control and applications, Math. Models Methods Appl. Sci., 16, 3, 439-477 (2006) · Zbl 1098.65092 · doi:10.1142/S0218202506001224
[37] Raveh, A.; Zarai, Y.; Margaliot, M.; Tuller, T., Ribosome Flow Model on a Ring, IEEE/ACM Trans. Comput. Biol. Bioinformatics, 12, 6, 1429-1439 (2015) · doi:10.1109/TCBB.2015.2418782
[38] Sanders, R., On convergence of monotone finite difference schemes with variable spatial differencing, Math. Comput., 40, 161, 91 (1983) · Zbl 0533.65061 · doi:10.1090/S0025-5718-1983-0679435-6
[39] Schreckenberg, M.; Sharma, SD, Pedestrian and Evacuation Dynamics (2002), Berlin Heidelberg: Springer-Verlag, Berlin Heidelberg · Zbl 0976.00018
[40] Shang, P.; Wang, Z., Analysis and control of a scalar conservation law modeling a highly re-entrant manufacturing system, J. Differ. Equ., 250, 2, 949-982 (2011) · Zbl 1211.35192 · doi:10.1016/j.jde.2010.09.003
[41] Smoller, J., Shock Waves and Reaction-Diffusion Equations (1994), New York: Springer-Verlag, New York · Zbl 0807.35002 · doi:10.1007/978-1-4612-0873-0
[42] Yao, C., Fan, H., Zhao, Y., Shi, Y., Wang, F.: Fast algorithm for nonlocal Allen-Cahn equation with scalar auxiliary variable approach. Applied Mathematics Letters, 126, (2022) · Zbl 1524.65431
[43] Zhao, J., Larios, A., Bobaru, F.: Construction of a peridynamic model for viscous flow. Journal of Computational Physics, 468, (2022) · Zbl 07578915
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.