×

Defining \(R\) and \(G(R)\). (English) Zbl 1521.20111

Summary: We show that for Chevalley groups \(G ( R )\) of rank at least 2 over an integral domain \(R\) each root subgroup is (essentially) the double centralizer of a corresponding root element. In many cases, this implies that \(R\) and \(G ( R )\) are bi-interpretable, yielding a new approach to bi-interpretability for algebraic groups over a wide range of rings and fields.
For such groups it then follows that the group \(G ( R )\) is (finitely) axiomatizable in the appropriate class of groups provided \(R\) is (finitely) axiomatizable in the corresponding class of rings.

MSC:

20G35 Linear algebraic groups over adèles and other rings and schemes
03C60 Model-theoretic algebra

References:

[1] Abe, E.: Chevalley groups over local rings. Tohoku Math. J. (2) 21, 474-494 (1969) Zbl 0188.07201 MR 258837 · Zbl 0188.07201
[2] Ahlbrandt, G., Ziegler, M.: Quasi-finitely axiomatizable totally categorical theories. Ann. Pure Appl. Logic 30, 63-82 (1986) Zbl 0592.03018 MR 831437 · Zbl 0592.03018
[3] Aschenbrenner, M., Khélif, A., Naziazeno, E., Scanlon, T.: The logical complexity of finitely generated commutative rings. Int. Math. Res. Notices 2020, 112-166 Zbl 1476.03047 MR 4050565 · Zbl 1476.03047
[4] Aslaksen, H., Lang, M. L.: Extending -systems to bases of root systems. J. Algebra 287, 496-500 (2005) Zbl 1128.17007 MR 2134157 · Zbl 1128.17007
[5] Avni, N., Lubotzky, A., Meiri, C.: First order rigidity of non-uniform higher rank arithmetic groups. Invent. Math. 217, 219-240 (2019) Zbl 1454.20001 MR 3958794 · Zbl 1454.20001
[6] Avni, N., Meiri, C.: On the model theory of higher-rank arithmetic groups. arXiv:2008.01793v2 (2020)
[7] Ax, J.: On the undecidability of power series fields. Proc. Amer. Math. Soc. 16, 846 (1965) Zbl 0199.03003 MR 177890 · Zbl 0199.03003
[8] Behr, H.: Arithmetic groups over function fields. I. A complete characterization of finitely generated and finitely presented arithmetic subgroups of reductive algebraic groups. J. Reine Angew. Math. 495, 79-118 (1998) Zbl 0923.20038 MR 1603845 · Zbl 0923.20038
[9] Borel, A., Serre, J.-P.: Cohomologie d’immeubles et de groupes S-arithmétiques. Topology 15, 211-232 (1976) Zbl 0338.20055 MR 447474 · Zbl 0338.20055
[10] Borel, A., Tits, J.: Homomorphismes “abstraits” de groupes algébriques simples. Ann. of Math. (2) 97, 499-571 (1973) Zbl 0272.14013 MR 316587 · Zbl 0272.14013
[11] Bunina, E. I.: Isomorphisms and elementary equivalence of Chevalley groups over commuta-tive rings. Sb. Math. 210, 1067-1091 (2019) Zbl 1472.20110 MR 3985726 · Zbl 1472.20110
[12] Carter, R. W.: Simple Groups of Lie Type. Pure Appl. Math. 28, Wiley, London (1972) Zbl 0248.20015 MR 0407163 · Zbl 0248.20015
[13] Conrad, B.: Reductive group schemes. Notes for the SGA 3 Summer School (Luminy, 2011);
[14] D’Aquino, P., Macintyre, A. J., Otero, M.: Some model-theoretic perspectives on the structure sheaves of b Z and the ring of finite adèles over Q. arXiv:2002.06660 (2020)
[15] Derakhshan, J.: Model theory of adeles and number theory. arXiv:2007.09237 (2020)
[16] Derakhshan, J., Macintyre, A.: Model theory of adeles I. Ann. Pure Appl. Logic 173, art. 103074, 43 pp. (2022) Zbl 07458668 MR 4354273 · Zbl 1525.03096
[17] Dixon, J. D., du Sautoy, M. P. F., Mann, A., Segal, D.: Analytic Pro-p Groups. 2nd ed., Cam-bridge Stud. Adv. Math. 61, Cambridge Univ. Press, Cambridge (1999) Zbl 0934.20001 MR 1720368 · Zbl 0934.20001
[18] Hazrat, R., Stepanov, A., Vavilov, N., Zhang, Z.: Commutator width in Chevalley groups. Note Mat. 33, 139-170 (2013) Zbl 1294.20059 MR 3071318 · Zbl 1294.20059
[19] Hodges, W.: Model Theory. Encyclopedia Math Appl. 42, Cambridge Univ. Press, Cambridge (1993) Zbl 0789.03031 MR 1221741 · Zbl 0789.03031
[20] Kramer, L., Röhrle, G., Tent, K.: Defining k in G.k/. J. Algebra 216, 77-85 (1999) Zbl 0935.20031 MR 1694590 · Zbl 0935.20031
[21] Lawther, R., Testerman, D. M.: Centres of centralizers of unipotent elements in simple alge-braic groups. Mem. Amer. Math. Soc. 210, no. 988, vi+188 pp. (2011) Zbl 1266.20061 MR 2780340 · Zbl 1266.20061
[22] Lubotzky, A., Shalev, A.: On some ƒ-analytic pro-p groups. Israel J. Math. 85, 307-337 (1994) Zbl 0819.20030 MR 1264349 · Zbl 0819.20030
[23] Mal’tsev, A. I.: The elementary properties of linear groups. In: Certain Problems in Mathemat-ics and Mechanics (In Honor of M. A. Lavrent’ev), Izdat. Sibirsk. Otdel. Akad. Nauk SSSR, Novosibirsk, 110-132 (1961) (in Russian); · Zbl 0228.20013
[24] English transl. in: A. I. Maltsev: The Metamathe-matics of Algebraic Systems, Chapter XX, North-Holland, Amsterdam (1971) Zbl 0228.20013 MR 0265480
[25] van Maldeghem, H.: Generalized Polygons. Monogr. Math. 93, Birkhäuser, Basel (1998) Zbl 0914.51005 MR 1725957 · Zbl 0914.51005
[26] Myasnikov, A. G., Sohrabi, M.: Bi-interpretability with Z and models of the complete ele-mentary theories of SL n .O/, T n .O/ and GL n .O/, n 3. arXiv:2004.03585 (2020)
[27] Nies, A.: Separating classes of groups by first-order sentences. Internat. J. Algebra Comput. 13, 287-302 (2003) Zbl 1059.20002 MR 2000873 · Zbl 1059.20002
[28] Nies, A., Segal, D., Tent, K.: Finite axiomatizability for profinite groups. Proc. London Math. Soc. (3) 123, 597-635 (2021) Zbl 07492740 MR 4368683 · Zbl 1509.03113
[29] Pillay, A.: Geometric Stability Theory. Oxford Logic Guides 32, Clarendon Press, Oxford Univ. Press, New York (1996) Zbl 0871.03023 MR 1429864 · Zbl 0871.03023
[30] Sela, Z.: Diophantine geometry over groups. VII. The elementary theory of a hyperbolic group. Proc. London Math. Soc. (3) 99, 217-273 (2009) Zbl 1241.20049 MR 2520356 · Zbl 1241.20049
[31] Sela, Z.: Diophantine geometry over groups X: the elementary theory of free products of groups. arXiv:1012.0044 (2010)
[32] Simion, I. I.: Double centralizers of unipotent elements in simple algebraic groups of type G 2 , F 4 and E 6 . J. Algebra 382, 335-367 (2013) Zbl 1286.20062 MR 3034486 · Zbl 1286.20062
[33] Simion, I. I.: Double centralizers of unipotent elements in simple algebraic groups of type E 7 and E 8 . J. Pure Appl. Algebra 219, 930-977 (2015) Zbl 1306.20052 MR 3282118 · Zbl 1306.20052
[34] Steinberg, R.: Lectures on Chevalley Groups. Univ. Lecture Ser. 66, Amer. Math. Soc., Prov-idence, RI (2016) Zbl 1361.20003 MR 3616493 · Zbl 1361.20003
[35] Stepanov, A.: Structure of Chevalley groups over rings via universal localization. J. Algebra 450, 522-548 (2016) Zbl 1337.20057 MR 3449702 · Zbl 1337.20057
[36] Tavgen’, O. I.: Bounded generability of Chevalley groups over rings of S-integer algebraic numbers. Izv. Akad. Nauk SSSR Ser. Mat. 54, 97-122, 221-222 (1990) (in Russian) Zbl 0697.20032 MR 1044049
[37] Tits, J., Weiss, R. M.: Moufang Polygons. Springer Monogr. Math., Springer, Berlin (2002) Zbl 1010.20017 MR 1938841 · Zbl 1010.20017
[38] Trost, A. A.: Bounded generation by root elements for Chevalley groups defined over rings of integers of function fields with an application in strong boundedness. arXiv:2108.12254 (2021)
[39] Weil, A.: Basic Number Theory. Springer, Berlin (1967) Zbl 0176.33601 MR 0234930 · Zbl 0176.33601
[40] Zil’ber, B. I.: Some model theory of simple algebraic groups over algebraically closed fields. Colloq. Math. 48, 173-180 (1984) Zbl 0567.20030 MR 758524 · Zbl 0567.20030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.