×

Distribution results for a special class of matrix sequences: joining approximation theory and asymptotic linear algebra. (English) Zbl 1521.15025

Summary: In a recent paper, D. S. Lubinsky [Linear Algebra Appl. 633, 332–365 (2022; Zbl 1478.15043)] proved eigenvalue distribution results for a class of Hankel matrix sequences arising in several applications, ranging from Padé approximation to orthogonal polynomials and complex analysis. The results appeared in Linear Algebra and its Applications, and indeed many of the statements, whose origin belongs to the field of approximation theory and complex analysis, contain deep results in (asymptotic) linear algebra. Here we make an analysis of a part of these findings by combining his derivation with previous results in asymptotic linear algebra, showing that the use of an already available machinery shortens considerably the considered part of the derivations. Remarks and few additional results are also provided, in the spirit of bridging (numerical and asymptotic) linear algebra results and those coming from analysis and pure approximation theory.

MSC:

15B05 Toeplitz, Cauchy, and related matrices
15A18 Eigenvalues, singular values, and eigenvectors
47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
41A21 Padé approximation
41A10 Approximation by polynomials

Citations:

Zbl 1478.15043

References:

[1] A. S. AL-FHAID, S. SERRA-CAPIZZANO, D. SESANA,ANDM. Z. ULLAH,Singular-value (and eigenvalue) distribution and Krylov preconditioning of sequences of sampling matrices approximating integral operators, Numer. Linear Algebra Appl., 21 (2014), pp. 722-743. · Zbl 1340.31001
[2] O. AXELSSON ANDG. LINDSKOG,On the rate of convergence of the preconditioned conjugate gradient method, Numer. Math., 48 (1986), pp. 499-523. · Zbl 0564.65017
[3] G. BARBARINO ANDS. SERRA-CAPIZZANO,Non-Hermitian perturbations of Hermitian matrix-sequences and applications to the spectral analysis of the numerical approximation of partial differential equations, Numer. Linear Algebra Appl., 27 (2020), Art. e2286, 31 pp. · Zbl 1474.65454
[4] B. BECKERMANN ANDA. B. J. KUIJLAARS,Superlinear convergence of conjugate gradients, SIAM J. Numer. Anal., 39 (2001), pp. 300-329. · Zbl 0997.65058
[5] B. BECKERMANN ANDS. SERRA-CAPIZZANO,On the asymptotic spectrum of finite element matrix sequences, SIAM J. Numer. Anal., 45 (2007), pp. 746-769. · Zbl 1140.65080
[6] R. BHATIA,Matrix Analysis, Springer, New York, 1997. · Zbl 0863.15001
[7] A. BÖTTCHER ANDS. GRUDSKY,Spectral Properties of Banded Toeplitz Matrices, SIAM, Philadelphia, 2005. · Zbl 1089.47001
[8] A. BÖTTCHER ANDB. SILBERMANN,Introduction to Large Truncated Toeplitz Matrices, Springer, New York, 1999. · Zbl 0916.15012
[9] D. FASINO ANDS. SERRA-CAPIZZANO,From Toeplitz matrix sequences to zero distribution of orthogonal polynomials, in Fast Algorithms for Structured Matrices: Theory and Applications, V. Olshevsky, ed., Contemp. Math., 323, AMS, Providence, 2003, pp. 329-339. · Zbl 1044.42024
[10] D. FASINO ANDP. TILLI,Spectral clustering properties of block multilevel Hankel matrices, Linear Algebra Appl., 306 (2000), pp. 155-163. · Zbl 0952.15016
[11] C. GARONI, H. SPELEERS, S-E. EKSTRÖM, A. REALI, S. SERRA-CAPIZZANO,ANDT. J. R. HUGHES, Symbol-based analysis of finite element and isogeometric B-spline discretizations of eigenvalue problems: exposition and review, Arch. Comput. Methods Eng., 26 (2019), pp. 1639-1690.
[12] C. GARONI ANDS. SERRACAPIZZANO,Generalized Locally Toeplitz sequences: Theory and Applications. Vol. I, Springer, Cham, 2017. · Zbl 1376.15002
[13] ,Generalized Locally Toeplitz sequences: Theory and Applications. Vol. II, Springer, Cham, 2018. · Zbl 1448.47004
[14] L. GOLINSKII ANDS. SERRA-CAPIZZANO,The asymptotic properties of the spectrum of nonsymmetrically perturbed Jacobi matrix sequences, J. Approx. Theory, 144 (2007), pp. 84-102. · Zbl 1111.15013
[15] A. B. J. KUIJLAARS,Convergence analysis of Krylov subspace iterations with methods from potential theory, SIAM Rev., 48 (2006), pp. 3-40. · Zbl 1092.65031
[16] A. B. J. KUIJLAARS ANDS. SERRA-CAPIZZANO,Asymptotic zero distribution of orthogonal polynomials with discontinuously varying recurrence coefficients, J. Approx. Theory, 113 (2001), pp. 142-155. · Zbl 0990.42008
[17] D. S. LUBINSKY,Distribution of eigenvalues of Toeplitz matrices with smooth entries, Linear Algebra Appl., 633 (2022), pp. 332-365. · Zbl 1478.15043
[18] L. REICHEL ANDL. N. TREFETHEN,Eigenvalues and pseudo-eigenvalues of Toeplitz matrices, Linear Algebra Appl., 162/164 (1992), pp. 153-185. · Zbl 0748.15010
[19] S. SERRA-CAPIZZANO,Spectral behavior of matrix sequences and discretized boundary value problems, Linear Algebra Appl., 337 (2001), pp. 37-78. · Zbl 1004.15012
[20] ,Generalized locally Toeplitz sequences: spectral analysis and applications to discretized partial differential equations, Linear Algebra Appl., 366 (2003), pp. 371-402. · Zbl 1028.65109
[21] ,The GLT class as a generalized Fourier analysis and applications, Linear Algebra Appl., 419 (2006), pp. 180-233. · Zbl 1109.65032
[22] S. SERRA-CAPIZZANO, D. BERTACCINI,ANDG. H. GOLUB,How to deduce a proper eigenvalue cluster from a proper singular value cluster in the nonnormal case, SIAM J. Matrix Anal. Appl., 27 (2005), pp. 82-86. · Zbl 1088.65031
[23] P. TILLI,Locally Toeplitz sequences: spectral properties and applications, Linear Algebra Appl., 278 (1998), pp. 91-120. · Zbl 0934.15009
[24] ,A note on the spectral distribution of Toeplitz matrices, Linear Multilinear Algebra, 45 (1998), pp. 147- 159. · Zbl 0951.65033
[25] ,Some results on complex Toeplitz eigenvalues, J. Math. Anal. Appl., 239 (1999), pp. 390-401. · Zbl 0935.15002
[26] E. E. TYRTYSHNIKOV ANDN. L. ZAMARASHKIN,Spectra of multilevel Toeplitz matrices: advanced theory via simple matrix relationships., Linear Algebra Appl., 270 (1998), pp. 15-27. · Zbl 0890.15006
[27] R. S. VARGA,Geršgorin and His Circles, Springer, Berlin, 2004. · Zbl 1057.15023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.