×

On symmetric representations of \(\mathrm{SL}_2(\mathbb{Z})\). (English) Zbl 1521.11027

Summary: We introduce the notions of symmetric and symmetrizable representations of \(\mathrm{SL}_2(\mathbb{Z})\). The linear representations of \(\mathrm{SL}_2(\mathbb{Z})\) arising from modular tensor categories are symmetric and have congruence kernel. Conversely, one may also reconstruct modular data from finite-dimensional symmetric, congruence representations of \(\mathrm{SL}_2(\mathbb{Z})\). By investigating a \(\mathbb{Z}/2\mathbb{Z}\)-symmetry of some Weil representations at prime power levels, we prove that all finite-dimensional congruence representations of \(\mathrm{SL}_2(\mathbb{Z})\) are symmetrizable. We also provide examples of unsymmetrizable noncongruence representations of \(\mathrm{SL}_2(\mathbb{Z})\) that are subrepresentations of a symmetric one.

MSC:

11F27 Theta series; Weil representation; theta correspondences
11E08 Quadratic forms over local rings and fields
18M20 Fusion categories, modular tensor categories, modular functors
20C35 Applications of group representations to physics and other areas of science
20G05 Representation theory for linear algebraic groups

Software:

SL2Reps

References:

[1] Bakalov, Bojko, Lectures on tensor categories and modular functors, University Lecture Series, x+221 pp. (2001), American Mathematical Society, Providence, RI · Zbl 0965.18002 · doi:10.1090/ulect/021
[2] Bruillard, Paul, On classification of modular categories by rank, Int. Math. Res. Not. IMRN, 7546-7588 (2016) · Zbl 1404.18016 · doi:10.1093/imrn/rnw020
[3] Dong, Chongying, Congruence property in conformal field theory, Algebra Number Theory, 2121-2166 (2015) · Zbl 1377.17025 · doi:10.2140/ant.2015.9.2121
[4] Eilenberg, Samuel, Cohomology theory in abstract groups. I, Ann. of Math. (2), 51-78 (1947) · Zbl 0029.34001 · doi:10.2307/1969215
[5] Eilenberg, Samuel, Cohomology theory in abstract groups. II. Group extensions with a non-Abelian kernel, Ann. of Math. (2), 326-341 (1947) · Zbl 0029.34101 · doi:10.2307/1969174
[6] Etingof, Pavel, Tensor categories, Mathematical Surveys and Monographs, xvi+343 pp. (2015), American Mathematical Society, Providence, RI · Zbl 1365.18001 · doi:10.1090/surv/205
[7] Etingof, Pavel, On fusion categories, Ann. of Math. (2), 581-642 (2005) · Zbl 1125.16025 · doi:10.4007/annals.2005.162.581
[8] Fiori, Andrew, The unbounded denominators conjecture for the noncongruence subgroups of index 7, J. Number Theory, 611-640 (2022) · Zbl 1535.11061 · doi:10.1016/j.jnt.2021.11.014
[9] Huang, Yi-Zhi, Rigidity and modularity of vertex tensor categories, Commun. Contemp. Math., 871-911 (2008) · Zbl 1169.17019 · doi:10.1142/S0219199708003083
[10] Andr\'e Joyal and Ross Street, Braided monoidal categories, Macquarie Math. Reports NO. 850067 (1985). · Zbl 0817.18007
[11] Joyal, Andr\'{e}, Braided tensor categories, Adv. Math., 20-78 (1993) · Zbl 0817.18007 · doi:10.1006/aima.1993.1055
[12] Kitaev, Alexei, Anyons in an exactly solved model and beyond, Ann. Physics, 2-111 (2006) · Zbl 1125.82009 · doi:10.1016/j.aop.2005.10.005
[13] Kloosterman, H. D., The behaviour of general theta functions under the modular group and the characters of binary modular congruence groups. I, Ann. of Math. (2), 317-375 (1946) · Zbl 0063.03262 · doi:10.2307/1969082
[14] Wen, Xiao-Gang, An introduction to quantum order, string-net condensation, and emergence of light and fermions, Ann. Physics, 1-29 (2005) · Zbl 1068.81054 · doi:10.1016/j.aop.2004.07.001
[15] Mackey, George W., On induced representations of groups, Amer. J. Math., 576-592 (1951) · Zbl 0045.30305 · doi:10.2307/2372309
[16] Moore, Gregory, Classical and quantum conformal field theory, Comm. Math. Phys., 177-254 (1989) · Zbl 0694.53074
[17] S.-H. Ng, Y. Wang, and S. Wilson, SL2Reps, Constructing symmetric representations of \(\text SL(2, Z)\), GAP package released Nov. 2022 (Version 1.1). https://www.gap-system.org/Packages/sl2reps.html.
[18] Siu-Hung Ng, Eric C Rowell, Zhenghan Wang, and Xiao-Gang Wen, Reconstruction of modular data from \(\operatorname SL_2(Z)\) representations, math.QA 2203.14829 (2022).
[19] Ng, Siu-Hung, Congruence subgroups and generalized Frobenius-Schur indicators, Comm. Math. Phys., 1-46 (2010) · Zbl 1206.18007 · doi:10.1007/s00220-010-1096-6
[20] Ng, Siu-Hung, Modular categories with transitive Galois actions, Comm. Math. Phys., 1271-1310 (2022) · Zbl 1483.18021 · doi:10.1007/s00220-021-04287-5
[21] Nobs, Alexandre, Die irreduziblen Darstellungen der Gruppen \(SL_2(Z_p)\), insbesondere \(SL_2(Z_2). I\), Comment. Math. Helv., 465-489 (1976) · Zbl 0346.20022 · doi:10.1007/BF02568170
[22] Nobs, Alexandre, Die irreduziblen Darstellungen der Gruppen \(SL_2(Z_p)\), insbesondere \(SL_2(Z_p)\). II, Comment. Math. Helv., 491-526 (1976) · Zbl 0346.20023 · doi:10.1007/BF02568171
[23] Reshetikhin, N., Invariants of \(3\)-manifolds via link polynomials and quantum groups, Invent. Math., 547-597 (1991) · Zbl 0725.57007 · doi:10.1007/BF01239527
[24] Rowell, Eric C., Mathematics of topological quantum computing, Bull. Amer. Math. Soc. (N.S.), 183-238 (2018) · Zbl 1437.81005 · doi:10.1090/bull/1605
[25] Serre, Jean-Pierre, Linear representations of finite groups, Graduate Texts in Mathematics, Vol. 42, x+170 pp. (1977), Springer-Verlag, New York-Heidelberg · Zbl 0355.20006
[26] Tanaka, Shun’ichi, Irreducible representations of the binary modular congruence groups \(\text{mod}\,p^{\lambda } \), J. Math. Kyoto Univ., 123-132 (1967) · Zbl 0219.20005 · doi:10.1215/kjm/1250524272
[27] Turaev, Vladimir G., Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathematics, xii+592 pp. (2010), Walter de Gruyter & Co., Berlin · Zbl 1213.57002 · doi:10.1515/9783110221848
[28] Weil, Andr\'{e}, Sur certains groupes d’op\'{e}rateurs unitaires, Acta Math., 143-211 (1964) · Zbl 0203.03305 · doi:10.1007/BF02391012
[29] Zhu, Yongchang, Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc., 237-302 (1996) · Zbl 0854.17034 · doi:10.1090/S0894-0347-96-00182-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.