×

Model-theoretic properties of dynamics on the Cantor set. (English) Zbl 1521.03107

This paper uses the tools of continuous first-order logic to study dynamical systems of the form \(\langle X,s\rangle\), where \(X\) is a Cantor set and \(s\) is a homeomorphism on \(X\). By the Gel’fand duality, the category of compact Hausdorff spaces and continuous maps is contravariantly equivalent to the category of commutative unital \(C^*\)-algebras and unit-preserving algebra homomorphisms. This allows continuous model theory to be applied to structures of the form \(\langle C,\sigma\rangle\), where \(C=C(X)\), is the \(C^*\)-algebra of all continuous complex-valued functions on \(X\) (the Gel’fand dual of \(X\)), and \(\sigma=C(s)\) is the isomorphism on \(C\) induced by \(S\). The main results are the following:
Theorem 1.
The theory of \(\langle C,\sigma\rangle\) does not have a model companion.
Theorem 2.
If two odometers on \(X\) are elementarily equivalent, then they are topologically conjugate.
Theorem 3.
Being a generic homeomorphism is not axiomatizable, but it is expressible as an omitting types property. If \(s\) is the generic homeomorphism of the Cantor set \(X\), then \(\langle C,\sigma\rangle\) is the prime model of its theory.

MSC:

03C66 Continuous model theory, model theory of metric structures
03C10 Quantifier elimination, model completeness, and related topics
03C65 Models of other mathematical theories
37B05 Dynamical systems involving transformations and group actions with special properties (minimality, distality, proximality, expansivity, etc.)
46J10 Banach algebras of continuous functions, function algebras
54C35 Function spaces in general topology

References:

[1] Akin, E., E. Glasner, and B. Weiss, “Generically there is but one self homeomorphism of the Cantor set,” Transactions of the American Mathematical Society, vol. 360 (2008), pp. 3613-30. · Zbl 1144.22007 · doi:10.1090/S0002-9947-08-04450-4
[2] Banaschewski, B., “More on compact Hausdorff spaces and finitary duality,” Canadian Journal of Mathematics, vol. 36 (1984), pp. 1113-18. · Zbl 0561.18004 · doi:10.4153/CJM-1984-063-6
[3] Bankston, P., “Reduced coproducts of compact Hausdorff spaces,” Journal of Symbolic Logic, vol. 52 (1987), pp. 404-24. · Zbl 0634.54007 · doi:10.2307/2274391
[4] Bartosova, D., K. Hart, L. Hoehn, and B. van der Steeg, “Lelek’s problem is not a metric problem,” Topology and Its Applications, vol. 158 (2011), pp. 2479-84. · Zbl 1236.54030 · doi:10.1016/j.topol.2011.08.010
[5] Ben Yaacov, I., “Fraïssé limits of metric structures,” Journal of Symbolic Logic, vol. 80 (2015), 100-15. · Zbl 1372.03070 · doi:10.1017/jsl.2014.71
[6] Ben Yaacov, I., A. Berenstein, C. W. Henson, and A. Usvyatsov, “Model theory for metric structures,” pp. 315-427, in Model Theory with Applications to Algebra and Analysis, Vol. II, edited by Z. Chatzidakis, D. Macpherson, A. Pillay, and A. Wilkie, vol. 350 of Lecture Notes Series of the London Mathematical Society, Cambridge University Press, Cambridge, 2008. · Zbl 1233.03045 · doi:10.1017/CBO9780511735219.011
[7] Ben Yaacov, I., and A. Usvyatsov, “Continuous first order logic and local stability,” Transactions of the American Mathematical Society, vol. 362 (2010), pp. 5213-59. · Zbl 1200.03024 · doi:10.1090/S0002-9947-10-04837-3
[8] Cortez, M. I., and S. Petite, “\(G\)-odometers and their almost one-to-one extensions,” Journal of the London Mathematical Society, vol. 78 (2008), pp. 1-20. · Zbl 1154.54024 · doi:10.1112/jlms/jdn002
[9] Dow, A., and K. Hart, “A universal continuum of weight ℵ,” Transactions of the American Mathematical Society, vol. 353 (2001), pp. 1819-38. · Zbl 0974.54023 · doi:10.1090/S0002-9947-00-02601-5
[10] Eagle, C. J., “Topological aspects of real-valued logic,” PhD thesis, University of Toronto, 2015, http://www.math.uvic.ca/ eaglec/Papers/EaglePhD.pdf.
[11] Eagle, C. J., I. Farah, B. Hart, B. Kadets, V. Kalashnyk, and M. Lupini, “Fraïssé limits of \[{C^{\ast }}\]-algebras,” Journal of Symbolic Logic, vol. 81 (2016), pp. 755-73. · Zbl 1383.03046 · doi:10.1017/jsl.2016.14
[12] Eagle, C. J., I. Goldbring, and A. Vignati, “The pseudoarc is a co-existentially closed continuum,” Topology and Its Applications, vol. 207 (2016), pp. 1-9. · Zbl 1338.54141 · doi:10.1016/j.topol.2016.04.008
[13] Eagle, C. J., and A. Vignati, “Saturation and elementary equivalence of C*-algebras,” Journal of Functional Analysis, vol. 269 (2015), pp. 2631-64. · Zbl 1477.46057 · doi:10.1016/j.jfa.2015.04.013
[14] Farah, I., B. Hart, M. Lupini, L. Robert, A. Tikuisis, A. Vignati, and W. Winter, “Model theory of C*-algebras,” Memoirs of the American Mathematical Society, vol. 271 (2021), no. 1324. · Zbl 1484.46001 · doi:10.1090/memo/1324
[15] Farah, I., B. Hart, and D. Sherman, “Model theory of operator algebras, II: Model theory,” Israel Journal of Mathematics, vol. 201 (2014), pp. 477-505. · Zbl 1301.03037 · doi:10.1007/s11856-014-1046-7
[16] Farah, I., and M. Magidor, “Omitting types in logic of metric structures,” Journal of Mathematical Logic, vol. 18 (2018), 1850006. · Zbl 1522.03146 · doi:10.1142/S021906131850006X
[17] Giordano, T., I. F. Putnam, and C. F. Skau, “\[{\mathbb{Z}^d} \]-odometers and cohomology,” Groups, Geometry, and Dynamics, vol. 13 (2019), pp. 909-38. · Zbl 1432.37013 · doi:10.4171/GGD/509
[18] Goldbring, I., “Enforceable operator algebras,” Journal of the Institute of Mathematics of Jussieu, (2019), pp. 1-33. · Zbl 1460.03009 · doi:10.1017/S1474748019000112
[19] Grigorchuk, R. I., V. V. Nekrashevich, and V. I. Suschanskii, “Automata, dynamical systems, and groups,” Proceedings of the Steklov Institute of Mathematics, vol. 231 (2000), pp. 128-203. · Zbl 1155.37311
[20] Hrushovski, E., “The Manin-Mumford conjecture and the model theory of difference fields,” Annals of Pure and Applied Logic, vol. 112 (2001), pp. 43-115. · Zbl 0987.03036 · doi:10.1016/S0168-0072(01)00096-3
[21] Kabluchko, Z., and K. Tent, “Universal-homogeneous structures are generic,” preprint, arXiv:1710.06137 [math.LO].
[22] Kechris, A. S., and C. Rosendal, “Turbulence, amalgamation, and generic automorphisms of homogeneous structures,” Proceedings of the London Mathematics Society, vol. 94 (2007), pp. 302-50. · Zbl 1118.03042 · doi:10.1112/plms/pdl007
[23] Kikyo, H., “Model companions of theories with an automorphism,” Journal of Symbolic Logic, vol. 65 (2000), pp. 1215-22. · Zbl 0967.03031 · doi:10.2307/2586697
[24] Moosa, R., and T. Scanlon, “Model theory of fields with free operators in characteristic zero,” Journal of Mathematical Logic, vol. 14 (2014), 1450009. · Zbl 1338.03067 · doi:10.1142/S0219061314500093
[25] Putnam, I. F., Cantor Minimal Systems, volume 70 of University Lecture Series, American Mathematical Society, Providence, 2018. · Zbl 1396.37002 · doi:10.1090/ulect/070
[26] Schoretsanitis, K., “Fraïssé theory for metric structures,” PhD thesis, University of Illinois at Urbana-Champaign, 2007.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.