×

On differential Galois groups of strongly normal extensions. (English) Zbl 1521.03086

Summary: We revisit E. R. Kolchin’s [Differential algebra and algebraic groups. New York, NY: Academic Press (1973; Zbl 0264.12102)] results on definability of differential Galois groups of strongly normal extensions, in the case where the field of constants is not necessarily algebraically closed. In certain classes of differential topological fields, which encompasses ordered or \(p\)-valued differential fields, we find a partial Galois correspondence and we show one cannot expect more in general. In the class of ordered differential fields, using elimination of imaginaries in CODF, we establish a relative Galois correspondence for relatively definable subgroups of the group of differential order automorphisms.

MSC:

03C60 Model-theoretic algebra
12H05 Differential algebra
12L12 Model theory of fields

Citations:

Zbl 0264.12102

References:

[1] A.Berarducci, M.Otero, Y.Peterzil, and A.Pillay, A descending chain condition for groups definable in o‐minimal structures, Ann. Pure Appl. Log.134, 303-313 (2005). · Zbl 1068.03033
[2] Q.Brouette, Differential Algebra, Ordered Fields and Model Theory, Ph.D. thesis, Université de Mons (2015).
[3] Q.Brouette and F.Point, Differential Galois theory in the class of formally real differential fields, preprint (2014), arXiv 1404.3338v1.
[4] T. C.Craven, Intersections of real closed fields, Can. J. Math.32(2), 431-440 (1980). · Zbl 0428.12015
[5] T.Crespo, Z.Hajto, and M.van derPut, Real and p‐adic Picard‐Vessiot fields, Math. Ann.365, 93-103 (2016). · Zbl 1344.34096
[6] H.Gillet, S.Gorchinskiy, and A.Ovchinikov, Parametrized Picard‐Vessiot extensions and Atiyah extensions, Adv. Math.238, 328-411 (2013). · Zbl 1328.12010
[7] N.Guzy and F.Point, Topological differential fields, Ann. Pure Appl. Log.161(4), 570-598 (2010). · Zbl 1225.03040
[8] E.Hrushovski, Groupoids, imaginaries and internal covers, J. Turkish Math.36(2), 173-198 (2012). · Zbl 1260.03065
[9] E.Hrushovski, Y.Peterzil, and A.Pillay, Groups, measures, and the NIP, J. Amer. Math. Soc.21(2), 563-596 (2008). · Zbl 1134.03024
[10] M.Kamensky and A.Pillay, Interpretations and differential Galois extensions, Int. Math. Res. Not.2016(24), 7390-7413 (2016). · Zbl 1404.12006
[11] I.Kaplansky, An Introduction to Differential Algebra, Actualités Scientifiques et Industrielles Vol. 1251 (Hermann, 1957). · Zbl 0083.03301
[12] E. R.Kolchin, Galois theory of differential fields, Amer. J. Math.75(4), 753-824 (1953). · Zbl 0052.27301
[13] E. R.Kolchin, Differential Algebra and Algebraic Groups, Pure Applied Mathematics Vol. 54 (Academic Press, 1973). · Zbl 0264.12102
[14] E. R.Kolchin, Constrained extensions of differential fields, Adv. Math.12, 141-170 (1974). · Zbl 0279.12103
[15] J.Kovacic, Pro‐algebraic groups and the Galois theory of differential fields, Amer. J. Math.95(3), 507-536 (1973). · Zbl 0275.12104
[16] J.Kovacic, Geometric characterisation of strongly normal extensions, Trans. Amer. Math. Soc.358(9), 4135-4157 (2006). · Zbl 1093.12003
[17] S.Lang, Introduction to Algebraic Geometry, Interscience Tracts in Pure and Applied Mathematics Vol. 5 (Interscience, 1958). · Zbl 0095.15301
[18] A. R.Magid, Lectures on Differential Galois Theory, University Lecture Series Vol. 7 (American Mathematical Society, 1994). · Zbl 0855.12001
[19] D.Marker, The model theory of differential fields, in: Model Theory of Fields, second edition, edited by D.Marker (ed.), M.Messmer (ed.), and A.Pillay (ed.), Lecture Notes in Logic Vol. 5 (Association for Symbolic Logic, 2006), pp. 41-109. · Zbl 1104.12006
[20] D.Marker, Model Theory: An introduction, Graduate Texts in Mathematics Vol. 217 (Springer, 2002). · Zbl 1003.03034
[21] A.Onshuus and A.Pillay, Definable groups and compact p‐adic Lie groups, J. Lond. Math. Soc. (2) 78(1), 233-247 (2008). · Zbl 1153.03015
[22] A.Pillay, First order topological structures and theories, J. Symb. Log.52(3), 763-778 (1987). · Zbl 0628.03022
[23] A.Pillay, On groups and fields definable in o‐minimal structures, J. Pure Appl. Algebra53, 239-255 (1988). · Zbl 0662.03025
[24] A.Pillay, Differential Galois theory I, Illinois J. Math.42(4), 678-698 (1998). · Zbl 0916.03028
[25] A.Pillay and O. L.Sanchez, Some definable Galois theory and examples, Bull. Symb. Log.23(2), 145-159 (2017). · Zbl 1419.03032
[26] G. A.Pogudin, The primitive element theorem for differential fields with zero derivation on the ground field, J. Pure Appl. Algebra219, 4035-4041 (2015). · Zbl 1334.12008
[27] F.Point, Ensembles définissables dans les corps ordonnés différentiellement clos (On differentially closed ordered fields), C. R. Acad. Sci. Paris, Ser. I349, 929-933 (2011). · Zbl 1237.03024
[28] F.Pop, Embedding problems over large fields, Ann. Math. (2) 144(1), 1-34 (1996). · Zbl 0862.12003
[29] B.Poonen, Elliptic curves, preprint (2001).
[30] P.Ribenboim, L’arithmétique des corps (Hermann, 1972). · Zbl 0253.12101
[31] G. E.Sacks, Saturated Model Theory, second edition (World Scientific, 2010). · Zbl 1190.03032
[32] S.Shelah, Minimal bounded index subgroup for dependent theories, Proc. Amer. Math. Soc.136(3), 1087-109 (2008). · Zbl 1144.03026
[33] J.Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics Vol. 106 (Springer, 1992). · Zbl 0752.14034
[34] J.Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Graduate Texts in Mathematics Vol. 151 (Springer, 1994). · Zbl 0911.14015
[35] M.Singer, A class of differential fields with minimal differential closures. Proc. Amer. Math. Soc.69(2), 319-322 (1978). · Zbl 0396.03032
[36] N.Solanki, Uniform Companions for Expansions of Large Differential Fields, PhD thesis, University of Manchester (2014).
[37] K.Tent and M.Ziegler, A Course in Model Theory, Lecture Notes in Logic Vol. 40 (Cambridge University Press, 2012). · Zbl 1245.03002
[38] M.Tressl, The uniform companion for large differential fields of characteristic 0, Trans. Amer. Math. Soc.357(10), 3933-3951 (2005). · Zbl 1077.03019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.