×

Mini-workshop: A geometric fairytale full of spectral gaps and random fruit. Abstracts from the mini-workshop held November 27 – December 3, 2022. (English) Zbl 1521.00020

Summary: In many situations, most prominently in quantum mechanics, it is important to understand well the eigenvalues and associated eigenfunctions of certain self-adjoint differential operators. The goal of this workshop was to study the strong link between spectral properties of such operators and the underlying geometry which might be randomly generated. By combining ideas and methods from spectral geometry and probability theory, we hope to stimulate new research including important topics such as Bose-Einstein condensation in random environments.

MSC:

00B05 Collections of abstracts of lectures
00B25 Proceedings of conferences of miscellaneous specific interest
47-06 Proceedings, conferences, collections, etc. pertaining to operator theory
81-06 Proceedings, conferences, collections, etc. pertaining to quantum theory
47A75 Eigenvalue problems for linear operators
58J50 Spectral problems; spectral geometry; scattering theory on manifolds
60K37 Processes in random environments
60K40 Other physical applications of random processes
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
81Q35 Quantum mechanics on special spaces: manifolds, fractals, graphs, lattices
82D03 Statistical mechanics in condensed matter (general)
Full Text: DOI

References:

[1] P. R. S. Antunes, R. D. Benguria, V. Lotoreichik, and T. Ourmières-Bonafos, A Variational Formulation for Dirac Operators in Bounded Domains . Applications to Spectral Geometric Inequalities, Communications in Mathematical Physics, 386 (2021), 781-818. · Zbl 1472.81090
[2] R. D. Benguria, S. Fournais, E. Stockmeyer, and H. Van Den Bosch, Self-Adjointness of two dimensional Dirac operators on domains, Annales Henri Poincaré 18 (2017), 1371-1383. · Zbl 1364.81117
[3] R. D. Benguria, S. Fournais, E. Stockmeyer, and H. Van Den Bosch, Spectral gaps of Dirac operators describing graphene quantum dots, Math. Phys. Geom. 20 (2017), article 11. · Zbl 1424.81011
[4] T. Bonnesen, Les problèmes des isopérimetres et des isépiphenes, Gauthier-Villars et C ie , Paris, 1929. · JFM 55.0431.08
[5] J. Dolbeault, M. Esteban, and E. Seré, On the eigenvalues of operators with gaps. Applica-tion to Dirac operators, Journal of Functional Analysis 174 (2000), 208-226 · Zbl 0982.47006
[6] E. Stockmeyer and S.Vugalter, Infinite mass boundary conditions for Dirac operators, J. Spectral Theory 9 (2019), 569-600. · Zbl 1419.81014
[7] G. Szegő, Inequalities for certain eigenvalues of a membrane of a given area, J. Ra-tion. Mech. Anal 3 (1954), 343-356. · Zbl 0055.08802
[8] A. Ancona, On strong barriers and inequality of Hardy for domains in R n , J. London Math. Soc., 34 (1986), 274-290. · Zbl 0629.31002
[9] R. Bañuelos, T. Carroll, Brownian motion and the foundamental frequency of a drum, Duke Math. J., 75 (1994), 575-602. · Zbl 0817.58046
[10] R. Bañuelos, R. Lata la, P. J. Méndez-Hernández, A Brascamp-Lieb-Luttinger-type inequal-ity and applications to symmetric stable processes, Proc. Amer. Math. Soc., 129 (2001), 2997-3008. · Zbl 0974.60037
[11] F. Bianchi, L. Brasco, The fractional Makai-Hayman inequality, Ann. Mat. Pura Appl. (4), 201 (2022), 2471-2504. · Zbl 07596311
[12] F. Bianchi, L. Brasco, An optimal lower bound in fractional spectral geometry for planar sets with topological constraints, in preparation. · Zbl 07808987
[13] L. Brasco, E. Parini, M. Squassina, Stability of variational eigenvalues for the fractional p−Laplacian, Discrete Contin. Dyn. Syst., 36 (2016), 1813-1845. · Zbl 1336.35270
[14] C. B. Croke, The first eigenvalue of the Laplacian for plane domains, Proc. Amer. Math. Soc., 81 (1981), 304-305. · Zbl 0462.35071
[15] D. E. Edmunds, W. D. Evans, Fractional Sobolev spaces and inequalities. Cambridge Tracts in Mathematics, 230. Cambridge University Press, Cambridge, 2023. · Zbl 1505.46003
[16] S. E. Graversen, M. Rao, Brownian Motion and Eigenvalues for the Dirichlet Laplacian, Math. Z., 203 (1990), 699-708. · Zbl 0696.60077
[17] W. K. Hayman, Some bounds for principal frequency, Applicable Anal., 7 (1977/78), 247-254. · Zbl 0383.35053
[18] J. Hersch, Sur la fréquence fondamentale d’une membrane vibrante:évaluations par défaut et principe de maximum, Z. Angew. Math. Phys., 11 (1960), 387-413. · Zbl 0104.41403
[19] E. Makai, A lower estimation of the principal frequencies of simply connected membranes, Acta Math. Acad. Sci. Hungar., 16 (1965), 319-323. · Zbl 0141.30201
[20] P. Calka, Y. Demichel & N. Enriquez, Large planar Poisson-Voronoi cells containing a given convex body, Ann. H. Lebesgue 4 (2021), 711-757. · Zbl 1483.52002
[21] P. Calka, Y. Demichel & N. Enriquez, Elongated Poisson-Voronoi cells in an empty half-plane, Adv. Math. 410 (2022). · Zbl 1501.60005
[22] P. Calka & J. E. Yukich, Fluctuation theory of random convex hulls, in preparation (2023).
[23] I. Corwin, The Kardar-Parisi-Zhang equation and universality class, Random Matrices: Theory and Applications 1 (2012) · Zbl 1247.82040
[24] A. Goldman and P. Calka, On the spectral function of the Poisson-Voronoi cells, Ann. Inst. H. Poincaré Probab. Statist. 39 (2003), 1057-1082. · Zbl 1031.60009
[25] D. Hug & R. Schneider, Asymptotic shapes of large cells in random tessellations, Geom. Funct. Anal. 17 (2007), , 156-191. · Zbl 1114.60012
[26] A. Rényi & R. Sulanke,Über die konvexe Hülle von n zufällig gewählten Punkten, Z. Wahrscheinlichkeitsth. verw. Geb. 2 (1963), 75-84. · Zbl 0118.13701
[27] M. Kac and J.M. Luttinger, Bose-Einstein condensation in the presence of impurities I, J. Math. Phys. 14(11):1626-1628 (1973) and Bose-Einstein condensation in the presence of impurities II, J. Math. Phys. 15(2):183-186 (1974).
[28] Joachim Kerner, Maximilian Pechmann, and Wolfgang Spitzer, On a condition for type-I Bose-Einstein condensation in random potentials in d dimensions, J. Math. Pures Appl. 143:287-310 (2020). · Zbl 1451.82020
[29] Olivier Lenoble, Leonid A. Pastur, and Valentin A. Zagrebnov, Bose-Einstein condensation in random potentials, C.R. Physique 5:129-142 (2004).
[30] Maximilian Pechmann, On Bose-Einstein condensation in one-dimensional noninteracting Bose gases in the presence of soft Poisson obstacles, J. Stat. Phys. 189, 42 (2022). · Zbl 1502.82012
[31] Alain-Sol Sznitman, Brownian motion, obstacles and random media, Springer, Berlin 1998. · Zbl 0973.60003
[32] Alain-Sol Sznitman, On the spectral gap in the Kac-Luttinger model and Bose-Einstein condensation, arXiv:2203.08123. · Zbl 1210.60047
[33] A.S. Sznitman, On the spectral gap in the Kac-Luttinger model and Bose-Einstein conden-sation, available at arXiv:2203.08123 .
[34] J. Kerner, M. Pechmann, and W. Spitzer, On a condition for type-I Bose-Einstein conden-sation in random potentials in d dimensions., J. Math. Pures Appl. 143 (2020), 287-310. Nodal count via topological data analysis Iosif Polterovich (joint work with Lev Buhovsky, Jordan Payette, Leonid Polterovich, Egor Shelukhin and Vukašin Stojisavljević ) · Zbl 1451.82020
[35] V. I. Arnold, On the topology of eigenfields, Topological Methods in Nonlinear Analysis, 26 (2005), no. 1, 9-16. · Zbl 1134.35300
[36] P. H. Bérard and B. Helffer, On Courant’s nodal domain property for linear combinations of eigenfunctions I, Doc. Math., 23 (2018), 1561-1585. · Zbl 1403.35192
[37] L. Buhovsky, A. Logunov, and M. Sodin, Eigenfunctions with infinitely many isolated critical points Int. Math. Res. Not. IMRN, 24 (2020), 10100-10113. · Zbl 1459.35295
[38] L. Buhovsky, J. Payette, I. Polterovich, L. Polterovich, E. Shelukhin and V. Stojisavljević, Coarse nodal count and topological persistence, arXiv: 2206.06347, 1-70.
[39] D. Cohen-Steiner, H. Edelsbrunner, J. Harer, and Y. Mileyko, Lipschitz functions have Lp-stable persistence, Found. Comput. Math., 10 (2010), no. 2, 127-139. · Zbl 1192.55007
[40] I. Polterovich, L. Polterovich, and V. Stojisavljević, Persistence barcodes and Laplace eigen-functions on surfaces, Geom. Dedicata, 201 (2019), 111-138. · Zbl 1420.58012
[41] L. Polterovich and M. Sodin, Nodal inequalities on surfaces, Math. Proc. Camb. Phil. Soc. 143 (2007), 459-467. · Zbl 1127.58029
[42] Y. Yomdin, Global bounds for the Betti numbers of regular fibers of differentiable mappings, Topology, 24 (1985), no. 2, 145-152. · Zbl 0566.57014
[43] A. Adhikari, C. Brennecke, B. Schlein. Bose-Einstein Condensation Beyond the Gross-Pitaevskii Regime. Ann. Henri Poincaré 22, 1163-1233 (2021). · Zbl 1467.82006
[44] C. Boccato, C. Brennecke, S. Cenatiempo, B. Schlein. Complete Bose-Einstein condensation in the Gross-Pitaevskii regime. Comm. Math. Phys. 359, no. 3, 975-1026 (2018). · Zbl 1391.82004
[45] C. Boccato, C. Brennecke, S. Cenatiempo, B. Schlein. The excitation spectrum of Bose gases interacting through singular potentials. J. Eur. Math. Soc. 22, no. 7 (2020). · Zbl 1448.81319
[46] C. Boccato, C. Brennecke, S. Cenatiempo, B. Schlein. Bogoliubov Theory in the Gross-Pitaevskii limit. Acta Mathematica 222, no. 2, 219-335 (2019). · Zbl 1419.82064
[47] C. Boccato, C. Brennecke, S. Cenatiempo, B. Schlein. Optimal Rate for Bose-Einstein Condensation in the Gross-Pitaevskii Regime. Comm. Math. Phys. 376, 1311-1395 (2020). · Zbl 1439.82004
[48] C. Brennecke, M. Caporaletti, B. Schlein. Excitation Spectrum for Bose Gases beyond the Gross-Pitaevskii Regime. Rev. Math. Phys (2022). · Zbl 1513.81132
[49] https://doi.org/10.1142/S0129055X22500271. · Zbl 1513.81132 · doi:10.1142/S0129055X22500271
[50] C. Brennecke, B. Schlein. Gross-Pitaevskii dynamics for Bose-Einstein condensates. Anal-ysis & PDE 12, no. 6, 1513-1596 (2019). · Zbl 1414.35184
[51] S. Fournais. Length scales for BEC in the dilute Bose gas. In: Partial Differential Equations, Spectral Theory, and Mathematical Physics. The Ari Laptev Anniversary Volume. EMS Series of Congress Reports 18, 115-133 (2021). · Zbl 1480.81133
[52] E. H. Lieb and R. Seiringer. Proof of Bose-Einstein condensation for dilute trapped gases. Phys. Rev. Lett. 88, 170409 (2002).
[53] E. H. Lieb, R. Seiringer, J. P. Solovej, J. Yngvason. The Mathematics of the Bose Gas and its Condensation. Oberwolfach Seminars, 34. Birkhauser Verlag, Basel, (2005). · Zbl 1104.82012
[54] E. H. Lieb, J. Yngvason. Ground State Energy of the low density Bose Gas. Phys. Rev. Lett. 80, 2504-2507 (1998).
[55] G. Basti, C. Caraci, S. Cenatiempo, Energy expansions for dilute Bose gases from local condensation results: a review of known results, preprint arXiv 2209.11714.
[56] G. Basti, S. Cenatiempo, B. Schlein, A new second-order upper bound for the ground state energy of dilute Bose gases, Forum Math. Sigma 9 (2021) · Zbl 1483.81165
[57] G. Basti, S. Cenatiempo, A. Giuliani, A. Olgiati, G. Pasqualetti, B. Schlein, A simple upper bound for the ground state energy of a dilute Bose gas of hard spheres, preprint arXiv 2212.04432.
[58] G. Basti, S. Cenatiempo, A. Olgiati, G. Pasqualetti, B. Schlein, Ground state energy of a Bose gas in the Gross-Pitaevskii regime, J. Math. Phys. 63 (2022), no.4, 041101. · Zbl 1507.81203
[59] A. Bijl, The lowest wave function of the symmetrical many particles system, Physica 7 (1940), no.9, 869-886. · JFM 66.1153.01
[60] N.N. Bogoliubov, On the theory of superfluidity, Izv. Akad. Nauk. USSR 11 (1947), no. 77. Engl. Transl. J. Phys. (USSR) 11, (1947) no.23.
[61] R. Dingle, The zero-point energy of a system of particles, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 40 (1949), no. 304 573-578. · Zbl 0033.42001
[62] F.J. Dyson, Ground-State Energy of a Hard-Sphere Gas, Phys. Rev. 106 (1957), 20-26. · Zbl 0077.23503
[63] L. Erdős, B. Schlein, H.-T. Yau, Ground-state energy of a low-density Bose gas: a second order upper bound, Phys. Rev. A 78 (2008), 053627.
[64] S. Fournais, J.P. Solovej, The energy of dilute Bose gases, Ann. Math. 192 (2020), no.3 893-976. · Zbl 1455.81050
[65] S. Fournais, J.P. Solovej, The energy of dilute Bose gases II: The general case, Invent. math. (2022).
[66] R. Jastrow, Many-body problem with strong forces, Phys. Rev. 98 (1955), no.5 1479-1484. · Zbl 0067.44602
[67] T.D. Lee, K. Huang, C.N. Yang, Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties, Physical Review, 106 (1957), 1135-1145. · Zbl 0077.45003
[68] E.H. Lieb, R. Seiringer, J.P. Solovej, J. Yngvason, The mathematics of the Bose gas and its condensation, Oberwolfach Seminars 34 (2005), Birkhäuser Basel. · Zbl 1104.82012
[69] M. Napiórkowski, R. Reuvers, J.P. Solovej, The Bogoliubov free energy functional I. Ex-istence of minimizers and phase diagrams, Arch. Ration. Mech. Anal. 229 (2018), no. 3, 1037-1090. · Zbl 1404.82014
[70] H.-T. Yau, J. Yin, The second order upper bound for the ground state energy of a Bose gas, J. Stat. Phys. 136 (2009), no.3, 453-503. · Zbl 1200.82002
[71] A. Adhikari, C. Brennecke, B. Schlein. Bose-Einstein condensation beyond the Gross-Pitaevskii regime. Ann. Henri Poincare. 22 (2021), 1163-1233. · Zbl 1467.82006
[72] G. Basti, S. Cenatiempo, B. Schlein. A new second order upper bound for the ground state energy of dilute Bose gases. Forum Math. Sigma 9 (2021), e74. · Zbl 1483.81165
[73] C. Boccato, C. Brennecke, S. Cenatiempo, B. Schlein. Complete Bose-Einstein condensation in the Gross-Pitaevskii regime. Commun. Math. Phys. 359 (2018), 975-1026. · Zbl 1391.82004
[74] C. Boccato, C. Brennecke, S. Cenatiempo, B. Schlein. Bogoliubov theory in the Gross-Pitaevskii limit. Acta Mathematica 222 (2019), 219-335. · Zbl 1419.82064
[75] C. Boccato, C. Brennecke, S. Cenatiempo, B. Schlein. Optimal rate for Bose-Einstein con-densation in the Gross-Pitaevskii regime. Commun. Math. Phys. 376 (2020), 1311-1395. · Zbl 1439.82004
[76] C. Boccato, R. Seiringer. The Bose gas in a box with Neumann boundary conditions. Ac-cepted in Ann. Henri Poincaré. Preprint arXiv:2205.15284 · Zbl 1522.81792
[77] C. Brennecke, M. Caporaletti, B. Schlein. Excitation spectrum for Bose Gases beyond the Gross-Pitaevskii regime. Rev. Math. Phys. 34, no. 09 (2022), 2250027 · Zbl 1513.81132
[78] S. Fournais. Length scales for BEC in the dilute Bose gas. Partial Differential Equations, Spectral Theory, and Mathematical Physics, EMS Series of Congress Reports (2021). · Zbl 1480.81133
[79] S. Fournais, J.P. Solovej. The energy of dilute Bose gases. Annals of Math. 192 (2020), 893-976. · Zbl 1455.81050
[80] S. Fournais, J.P. Solovej. The energy of dilute Bose gases II: The general case. Preprint arXiv:2108.12022 · Zbl 07676261
[81] R. Seiringer. Free energy of a dilute Bose gas: Lower Bound. Commun. Math. Phys. 279 (2008), 595-636. · Zbl 1148.82003
[82] H.-T. Yau, J. Yin. The second order upper bound for the ground state energy of a Bose gas. J. Stat. Phys. 136 (2009), no. 3, 453-503. · Zbl 1200.82002
[83] J. Yin. Free energies of dilute Bose Gases: upper bound. J. Stat. Phys. 141 (2010), 683-726. References · Zbl 1208.82005
[84] M. van den Berg: On condensation in the free-boson gas and the spectrum of the Laplacian. J. Stat. Phys. 31, 623-637 (1983)
[85] M. van den Berg, J.T. Lewis: On generalized condensation in the free boson gas. Physica A: Statistical Mechanics and its Applications 110, 550-564 (1982)
[86] M. van den Berg, J.T. Lewis, M. Lunn: On the general theory of Bose-Einstein condensation and the state of the free boson gas. Helvetica Physica Acta 59, 1289-1310 (1986)
[87] M. van den Berg, J.T. Lewis, J.V. Pulé: A general theory of Bose-Einstein condensation. Helvetica Physica Acta 59, 1271-1288 (1986)
[88] T. Jaeck, J.V. Pulé, V.A. Zagrebnov: On the nature of Bose-Einstein condensation enhanced by localization. J. Math. Phys. 51, 103302 (2010) · Zbl 1314.82017
[89] M. Kac, J.M. Luttinger: Bose-Einstein condensation in the presence of impurities. J. Math. Phys. 14, 1626-1628 (1973)
[90] M. Kac, J.M. Luttinger: Bose-Einstein condensation in the presence of impurities. II. J. Math. Phys. 15, 183-186 (1974)
[91] J. Kerner, M. Pechmann, W. Spitzer: On Bose-Einstein condensation in the Luttinger-Sy model with finite interaction strength. J. Stat. Phys. 174, 1346-1371 (2019) · Zbl 1420.82001
[92] J. Kerner, M. Pechmann, W. Spitzer: On a condition for type-I Bose-Einstein condensation in random potentials in d dimensions. J. Math. Pures Appl. 143, 287-310 (2020) · Zbl 1451.82020
[93] F. Klopp, N.A. Veniaminov: Interacting electrons in a random medium: a simple one-dimensional model. arxiv:1408.5839 (2014)
[94] O. Lenoble, L.A. Pastur, V.A. Zagrebnov: Bose-Einstein condensation in random potentials. Comptes Rendus Physique 5, 129-142 (2004)
[95] O. Lenoble, V.A. Zagrebnov: Bose-Einstein condensation in the Luttinger-Sy model. Mark. Proc. Rel. Fields 13, 441-468 (2007) · Zbl 1181.82005
[96] H. Leschke, P. Müller, S. Warzel: A survey of rigorous results on random schrödinger opera-tors for amorphous solids. In: Interacting Stochastic Systems, pp. 119-151. Springer (2005) · Zbl 1094.82009
[97] J.M. Luttinger, H.K. Sy: Bose-Einstein condensation in a one-dimensional model with random impurities. Phys. Rev. A 7, 712-720 (1973)
[98] J.M. Luttinger, H.K. Sy: Low-lying energy spectrum of a one-dimensional disordered system. Phys. Rev. A 7, 701-712 (1973)
[99] M. Pechmann: On Bose-Einstein Condensation in One-Dimensional Noninteracting Bose Gases in the Presence of Soft Poisson Obstacles. Journal of Statistical Physics 189, 42 (2022) · Zbl 1502.82012
[100] A.S. Sznitman: On the spectral gap in the Kac-Luttinger model and Bose-Einstein con-densation. Available at arXiv:2203.08123
[101] P. Buser, A note on the isoperimetric constant, Ann. Scient.Éc. Norm. Sup. 15, 213-230 (1982). · Zbl 0501.53030
[102] J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, in: “Problems in Analysis” (Papers dedicated to Salomon Bochner, 1969), Princeton Univ. Press, Princeton, NJ, 195-199 (1970). · Zbl 0212.44903
[103] J. Dodziuk and W. S. Kendall, Combinatorial Laplacians and isoperimetric inequality, in: K. D. Elworthy (ed.), “From local times to global geometry, control and physics” (Coventry, 1984/85), pp. 68-74, Pitman Res. Notes Math. Ser. 150, Longman Sci. Tech., Harlow, 1986. · Zbl 0619.05005
[104] A. Kostenko and N. Nicolussi, Spectral estimates for infinite quantum graphs, Calc. Var. 58, no. 1, Art. 15 (2019). · Zbl 1404.81111
[105] S. Nicaise, Spectre des réseaux topologiques finis, Bull. Sci. Math., II. Sér., 111, 401-413 (1987). · Zbl 0644.35076
[106] L. Dello Schiavo, E. Kopfer, and K.-T. Sturm. A Discovery Tour in Random Riemannian Geometry. arXiv:2012.06796, 2020.
[107] L. Dello Schiavo, R. Herry, E. Kopfer, and K.-T. Sturm. Conformally Invariant Random Fields, Quantum Liouville Measures, and Random Paneitz Operators on Riemannian Man-ifolds of Even Dimension. arXiv:2105.13925, 2021.
[108] A. Lodhia, S. Sheffield, X. Sun, and S.S. Watson. Fractional Gaussian fields: A survey. Probab. Surveys 13:1-56 (2016). · Zbl 1334.60055
[109] S. Becker, M. Embree, J. Wittsten, M. Zworski, Mathematics of magic angles in a model of twisted bilayer graphene, Probability and Mathematical Physics 3 (2022), 69-103. · Zbl 1491.35147
[110] S Becker, T Humbert, M Zworski, Fine structure of flat bands in a chiral model of magic angles, arXiv preprint arXiv:2208.01628.
[111] S Becker, T Humbert, M Zworski, Integrability in the chiral model of magic angles, arXiv preprint arXiv:2208.01620.
[112] G. Tarnopolsky, A. Kruchkov, and A. Vishwanath, Origin of Magic Angles in Twisted Bilayer Graphene, Phys. Rev. Lett. 122 (1990), 106405.
[113] A. Watson, M. Luskin, Existence of the first magic angle for the chiral model of bilayer graphene, Journal of Mathematical Physics 62 091502 (2021). · Zbl 1506.82045
[114] Ben Andrews and Julie Clutterbuck. Proof of the fundamental gap conjecture. J. Amer. Math. Soc., 24(3):899-916, 2011. · Zbl 1222.35130
[115] Ben Andrews, Julie Clutterbuck, and Daniel Hauer. The fundamental gap for a one-dimensional Schrödinger operator with Robin boundary conditions. to appear in Proceedings of the American Mathematical Society, 2021. · Zbl 1514.47035
[116] Mark S. Ashbaugh and Rafael Benguria. Optimal lower bound for the gap between the first two eigenvalues of one-dimensional Schrödinger operators with symmetric single-well potentials. Proc. Amer. Math. Soc., 105(2):419-424, 1989. · Zbl 0668.34023
[117] Gregory Berkolaiko and Peter Kuchment. Introduction to quantum graphs. Number 186. American Mathematical Soc., 2013. · Zbl 1318.81005
[118] Theodora Bourni, Julie Clutterbuck, Xuan Hien Nguyen, Alina Stancu, Guofang Wei, and Valentina-Mira Wheeler. Explicit fundamental gap estimates for some convex domains in H 2 . Mathematical Research Letters. · Zbl 1496.35264
[119] Theodora Bourni, Julie Clutterbuck, Xuan Hien Nguyen, Alina Stancu, Guofang Wei, and Valentina-Mira Wheeler. The vanishing of the fundamental gap of convex domains in H n . arXiv preprint arXiv:2005.11784, 2020. · Zbl 1490.35237
[120] Herm Jan Brascamp and Elliott H. Lieb. On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Functional Analysis, 22(4):366-389, 1976. · Zbl 0334.26009
[121] Xianzhe Dai, Shoo Seto, and Guofang Wei. Fundamental gap estimate for convex domains on sphere-the case n = 2. arXiv preprint arXiv:1803.01115, 2018. · Zbl 1514.35298
[122] Xianzhe Dai, Shoo Seto, and Guofang Wei. Fundamental gap comparison. Surv. Geom. Anal., 2018:1-16, 2019.
[123] Richard Lavine. The eigenvalue gap for one-dimensional convex potentials. Proc. Amer. Math. Soc., 121(3):815-821, 1994. · Zbl 0805.34080
[124] Xuan Hien Nguyen, Alina Stancu, and Guofang Wei. The fundamental gap of horoconvex domains in H n . International Mathematics Research Notices, 2022. · Zbl 1510.58010
[125] Jonathan Rohleder. Eigenvalue estimates for the Laplacian on a metric tree. Proceedings of the American Mathematical Society, 145(5):2119-2129, 2017. · Zbl 1367.34029
[126] Shoo Seto, Lili Wang, Guofang Wei, et al. Sharp fundamental gap estimate on convex domains of sphere. Journal of Differential Geometry, 112(2):347-389, 2019. · Zbl 1418.35286
[127] Ying Shih. A counterexample to the convexity property of the first eigenfunction on a convex domain of negative curvature. Communications in partial differential equations, 14(7):867-876, 1989. · Zbl 0681.35030
[128] M. van den Berg. On condensation in the free-boson gas and the spectrum of the Laplacian. J. Statist. Phys., 31(3):623-637, 1983.
[129] Shing-Tung Yau. Nonlinear analysis in geometry, volume 33 of Monographies de L’Enseignement Mathématique. L’Enseignement Mathématique, Geneva, 1986. Série des Conférences de l’Union Mathématique Internationale, 8. Reporter: Maximilian Pechmann · Zbl 0631.53003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.