×

Event-triggered polynomial input-to-state stability in mean square for pantograph stochastic systems. (English) Zbl 1520.93454

Summary: This article investigates the polynomial integral input-to-state stability in mean square (ms-PIISS) and polynomial \((t+1)^\aleph\)-weighted integral input-to-state stability in mean square (\((t+1)^\aleph\)-weighted ms-PIISS) for pantograph stochastic systems. The above stability is achieved through dynamic event-triggered mechanism and static event-triggered mechanism. To avert Zeno behaviour in each sample path, our event-triggered mechanisms (ETMs) force a pause time after each successful execution, which will lead to intermittent detection of system status, thus greatly saving communication resources. One utilises the Hanalay-type inequality to obtain the less conservative stability criterion. In addition, a collaborative design method of ETM and linear controller is proposed. Ultimately, an paraphrastic example is shown to indicate the availability of the mentioned collaborative design process.

MSC:

93D25 Input-output approaches in control theory
93C65 Discrete event control/observation systems
93E15 Stochastic stability in control theory
Full Text: DOI

References:

[1] Banerjee, A.; Amrr, S. M.; Sarkar, R.; Saidi, A. S.; Nabi, M., Communication constrained robust guidance strategy using quantized artificial time delay based control with input saturation, IET Control Theory & Applications, 15, 18, 2286-2301 (2021) · doi:10.1049/cth2.v15.18
[2] Bartosiewicz, Z.; Kaldmäe, A.; Kotta, Ü., Accessibility and system reduction of nonlinear time-delay control systems, IEEE Transactions on Automatic Control, 66, 8, 3781-3788 (2020) · Zbl 1471.93043 · doi:10.1109/TAC.2020.3028566
[3] Chen, J.; Chen, B.; Zeng, Z.; Jiang, P., Event-Based synchronization for multiple neural networks with time delay and switching disconnected topology, IEEE Transactions on Cybernetics, 51, 12, 5993-6003 (2021) · doi:10.1109/TCYB.2019.2960762
[4] Cui, Y.; Xu, L., Dynamic event-triggered average dwell time control for switching linear systems, International Journal of Systems Science, 53, 14, 2980-2997 (2022) · Zbl 1504.93223 · doi:10.1080/00207721.2022.2067908
[5] Elshenhab, A. M.; Wang, X., Representation of solutions of linear differential systems with pure delay and multiple delays with linear parts given by non-permutable matrices, Applied Mathematics and Computation, 410 (2021) · Zbl 1510.34138 · doi:10.1016/j.amc.2021.126443
[6] Fu, T.; Zhou, Y., Stabilization of switched time-delay systems with only unstable subsystems: a new approach based on a vibration model of 1.5 degrees of freedom, Applied Mathematics and Computation, 415 (2022) · Zbl 1510.93128 · doi:10.1016/j.amc.2021.126740
[7] Goebel, R.; Sanfelice, R. G.; Teel, A. R., Hybrid dynamical systems: robust stability and control for systems that combine continuout-time and discrete-time dynamics, IEEE Control System Magazine, 4, 2, 28-93 (2009) · Zbl 1395.93001 · doi:10.1109/MCS.2008.931718
[8] Hartung, F., On numerical approximation of a delay differential equation with impulsive self-support condition, Applied Mathematics and Computation, 418 (2022) · Zbl 1510.65129 · doi:10.1016/j.amc.2021.126818
[9] He, Y., Zhang, C. K., Zeng, H. B., & Wu, M. (2022). Additional functions of variable-augmented-based free-weighting matrices and application to systems with time-varying delay. International Journal of Systems Science. · Zbl 1520.93373
[10] Hernandez-Vargas, E.; Colaneri, P.; Middleton, R.; Blanchini, F., Discrete-time control for switched positive systems with application to mitigating viral escape, International Journal of Robust Nonlinear Control, 21, 10, 1093-1111 (2011) · Zbl 1225.93072 · doi:10.1002/rnc.1628
[11] Jacob, B.; Nabiullin, R.; Partington, J. R.; Schwenninger, F. L., Infinite-dimensional input-to-state stability and orlicz space, Siam Journal on Control and Optimization, 56, 2, 868-889 (2018) · Zbl 1390.93661 · doi:10.1137/16M1099467
[12] Jia, R.; Zong, X., Time-varying formation control of linear multiagent systems with time delays and multiplicative noises, International Journal of Robust Nonlinear Control, 31, 18, 9008-9025 (2021) · Zbl 1527.93012 · doi:10.1002/rnc.v31.18
[13] Lavaei, A.; Soudjani, S.; Abate, A.; Zamani, Z., Automated verification and synthesis of stochastic hybrid systems: A survey, Automatica, 146 (2022) · Zbl 1504.93389 · doi:10.1016/j.automatica.2022.110617
[14] Li, J.; Zhang, Y., Input-to-state stability of discrete-time time-varying impulsive delay systems, International Journal of Systems Science, 53, 14, 2860-2875 (2022) · Zbl 1516.93218 · doi:10.1080/00207721.2022.2062801
[15] Li, X.; Zhang, X.; Song, S., Effect of delayed impulses on input-to-state stability of nonlinear systems, Automatica, 76, 378-382 (2017) · Zbl 1352.93089 · doi:10.1016/j.automatica.2016.08.009
[16] Liang, S.; Liang, J.; Qiu, J., Finite-time input-to-state stability of discrete-time stochastic switched systems: a comparison principle-based method, International Journal of Systems Science, 54, 1, 1-16 (2023) · Zbl 1519.93199 · doi:10.1080/00207721.2022.2093421
[17] Luo, S. (n.d.). Stability and \(####\)-Gain Analysis of Linear Periodic Event-Triggered Systems with Large Delays. IEEE Transactions on Circuits and Systems II: Express Briefs. doi: .
[18] Mao, X., Differential equations and their applications (2007), Chichester: Horwood Pub, Chichester · Zbl 1138.60005
[19] Mao, X.; Yuan, C., Stochastic differential equations with markovian switching (2006), London UK: Imperial college press, London UK · Zbl 1126.60002
[20] Nejati, A.; Soudjani, S.; Zamani, M., Compositional construction of control barrier functions for continuous-time stochastic hybrid systems, Automatica, 145 (2022) · Zbl 1498.93673 · doi:10.1016/j.automatica.2022.110513
[21] Shen, W.; Zhang, X.; Wang, Y., Stability analysis of high order neural networks with proportional delays, Neurocomputing, 372, 33-39 (2019) · doi:10.1016/j.neucom.2019.09.019
[22] Sontag, E. D., Smooth stabilization implies coprime factorization, IEEE Transactions on Automatic Control, 39, 435-443 (1989) · Zbl 0682.93045 · doi:10.1109/9.28018
[23] Sontag, E. D., Comments on integral variants of ISS, System & Control Letter, 34, 93-100 (1998) · Zbl 0902.93062 · doi:10.1016/S0167-6911(98)00003-6
[24] Sontag, E. D., Stochastic differential equations with markovian switching (2008), Berlin, Germany: Springer-Verlag, Berlin, Germany
[25] Teel, A. R., Connections between razumikhin-type theorems and the ISS nonlinear small gain theorem, IEEE Transactions on Automatic Control, 43, 7, 960-964 (1998) · Zbl 0952.93121 · doi:10.1109/9.701099
[26] Vosswinkel, R.; Robenack, K., Determining input-to-state and incremental input-to-state stability of nonpolynomial systems, International Journal and Robust Nonlinear Control, 30, 12, 4676-4689 (2020) · Zbl 1466.93138 · doi:10.1002/rnc.v30.12
[27] Wang, K.; Liu, C., Event-triggered stabilization for large-scale interconnected systems with time delays, International Journal and Robust Nonlinear Control, 32, 13, 7469-7487 (2022) · Zbl 1528.93135 · doi:10.1002/rnc.v32.13
[28] Wang, M.; Li, P.; Li, X., Event-triggered delayed impulsive control for input-to-state stability of nonlinear impulsive systems, Nonlinear Analysis & Hybrid Systems, 47 (2023) · Zbl 1505.93155 · doi:10.1016/j.nahs.2022.101277
[29] Wang, Y.; Sun, X.; Shi, J.; Zhao, J., Input-to-state stability of switched nonlinear systems with time delays under asynchronous switching, IEEE Transactions on Cybernetics, 43, 6, 2261-2265 (2013) · doi:10.1109/TCYB.2013.2240679
[30] Yang, T.; Wu, F.; Yang, L., Tracking control of hybrid systems with state-triggered jumps and stochastic events and its application, IET Control Theory & Applications, 11, 7, 1024-1033 (2017) · doi:10.1049/cth2.v11.7
[31] Yang, X.; Li, X.; Xi, Q.; Duan, P., Review of stability and stabilization for impulsive delayed systems, Mathematical Biosciences and English, 15, 6, 1495-1515 (2018) · Zbl 1416.93159 · doi:10.3934/mbe.2018069
[32] Yu, H.; Chen, X.; Hao, F., Switching event-triggering mechanisms for integral input-to-state stable nonlinear systems, International Journal and Robust Nonlinear Control, 31, 10, 4839-4855 (2021) · Zbl 1525.93270 · doi:10.1002/rnc.v31.10
[33] Yu, H.; Hao, F., Input-to-state stability of integral-based event-triggered control for linear plants, Automatica, 85, 248-255 (2017) · Zbl 1375.93113 · doi:10.1016/j.automatica.2017.07.068
[34] Zhang, X.; Han, Q., Time-delay systems and their applications, International Journal of Systems Science, 53, 12, 2477-2479 (2022) · Zbl 07613992 · doi:10.1080/00207721.2022.2111888
[35] Zhou, Y., & Zeng, Z. (2022). Event-Triggered Impulsive Quasisynchronization of Coupled Dynamical Networks With Proportional Delay. IEEE Transactions on Cybernetics.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.