×

Cell-center-based model for simulating three-dimensional monolayer tissue deformation. (English) Zbl 1520.92027

Summary: The shape of the epithelial monolayer can be depicted as a curved tissue in three-dimensional (3D) space, where individual cells are tightly adhered to one another. The 3D morphogenesis of these tissues is governed by cell dynamics, and a variety of mathematical modeling and simulation studies have been conducted to investigate this process. One promising approach is the cell-center model, which can account for the discreteness of cells. The cell nucleus, which is considered to correspond to the cell center, can be observed experimentally. However, there has been a shortage of cell-center models specifically tailored for simulating 3D monolayer tissue deformation. In this study, we developed a mathematical model based on the cell-center model to simulate 3D monolayer tissue deformation. Our model was confirmed by simulating the in-plane deformation, out-of-plane deformation, and invagination due to apical constriction.

MSC:

92C37 Cell biology
92C17 Cell movement (chemotaxis, etc.)
92C15 Developmental biology, pattern formation

References:

[1] Adachi, H.; Matsuda, K.; Niimi, T.; Inoue, Y.; Kondo, S.; Gotoh, H., Anisotropy of cell division and epithelial sheet bending via apical constriction shape the complex folding pattern of beetle horn primordia, Mech. Dev., 152, June, 32-37 (2018)
[2] Akiyama, M.; Sushida, T.; Ishida, S.; Haga, H., Mathematical model of collective cell migrations based on cell polarity, Dev. Growth Differ., 59, 5, 471-490 (2017), arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/dgd.12381
[3] Alt, S.; Ganguly, P.; Salbreux, G., Vertex models: from cell mechanics to tissue morphogenesis, Philos. Trans. Biol. Sci., 372, 1720, Article 20150520 pp. (2017)
[4] Antunes, M.; Pereira, T.; Cordeiro, J. V.; Almeida, L.; Jacinto, A., Coordinated waves of actomyosin flow and apical cell constriction immediately after wounding, J. Cell Biol., 202, 2, 365-379 (2013)
[5] Barton, D. L.; Henkes, S.; Weijer, C. J.; Sknepnek, R., Active Vertex Model for cell-resolution description of epithelial tissue mechanics, PLoS Comput. Biol., 13, 6, 1-33 (2017), arXiv:1612.05960
[6] Belmonte, J. M.; Swat, M. H.; Glazier, J. A., Filopodial-tension model of convergent-extension of tissues, PLoS Comput. Biol., 12, 6, Article e1004952 pp. (2016)
[7] Bi, D.; Yang, X.; Marchetti, M. C.; Manning, M. L., Motility-driven glass and jamming transitions in biological tissues, Phys. Rev. X, 6, 2 (2016), arXiv:1509.06578
[8] Bonilla, L.L., Carpio, A., Trenado, C., 2020. Tracking Collective Cell Motion By Topological Data Analysis, Vol. 16, (12 December), arXiv:2009.14161, http://dx.doi.org/10.1371/journal.pcbi.1008407.
[9] Brau, F.; Damman, P.; Diamant, H.; Witten, T. A., Wrinkle to fold transition: influence of the substrate response, Soft Matter, 9, 34, 8177-8186 (2013)
[10] Brugués, A.; Anon, E.; Conte, V.; Veldhuis, J. H.; Gupta, M.; Colombelli, J.; Muñoz, J. J.; Brodland, G. W.; Ladoux, B.; Trepat, X., Forces driving epithelial wound healing, Nat. Phys., 10, 9, 683-690 (2014)
[11] Cerda, E.; Mahadevan, L., Geometry and physics of wrinkling, Phys. Rev. Lett., 90, 7, Article 074302 pp. (2003)
[12] Farhadifar, R.; Röper, J.-C.; Aigouy, B.; Eaton, S.; Jülicher, F., The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing, Curr. Biol., 17, 24, 2095-2104 (2007), URL: https://www.sciencedirect.com/science/article/pii/S0960982207023342
[13] Fletcher, A. G.; Osterfield, M.; Baker, R. E.; Shvartsman, S. Y., Vertex models of epithelial morphogenesis, Biophys. J., 106, 11, 2291-2304 (2014)
[14] Honda, H.; Tanemura, M.; Nagai, T., A three-dimensional vertex dynamics cell model of space-filling polyhedra simulating cell behavior in a cell aggregate, J. Theoret. Biol., 226, 4, 439-453 (2004) · Zbl 1439.92074
[15] Inaki, M.; Hatori, R.; Nakazawa, N.; Okumura, T.; Ishibashi, T.; Kikuta, J.; Ishii, M.; Matsuno, K.; Honda, H., Chiral cell sliding drives left-right asymmetric organ twisting, ELife, 7, Article e32506 pp. (2018)
[16] Inoue, Y.; Suzuki, M.; Watanabe, T.; Yasue, N.; Tateo, I.; Adachi, T.; Ueno, N., Mechanical roles of apical constriction, cell elongation, and cell migration during neural tube formation in xenopus, Biomech. Model. Mechanobiol., 15, 6, 1733-1746 (2016)
[17] Inoue, Y.; Tateo, I.; Adachi, T., Epithelial tissue folding pattern in confined geometry, Biomech. Model. Mechanobiol., 19, 3, 815-822 (2020)
[18] Inoue, Y.; Watanabe, T.; Okuda, S.; Adachi, T., Mechanical role of the spatial patterns of contractile cells in invagination of growing epithelial tissue, Dev. Growth Differ., 59, 5, 444-454 (2017)
[19] Keller, R.; Shih, J.; Sater, A., The cellular basis of the convergence and extension of the Xenopus neural plate, Dev. Dyn., 193, 3, 199-217 (1992)
[20] Lee, J.-Y.; Harland, R. M., Actomyosin contractility and microtubules drive apical constriction in Xenopus bottle cells, Dev. Biol., 311, 1, 40-52 (2007)
[21] Li, B.; Sun, S. X., Coherent motions in confluent cell monolayer sheets, Biophys. J., 107, 7, 1532-1541 (2014)
[22] Lomas, A., Cellular forms: An artistic exploration of morphogenesis, (ACM SIGGRAPH 2014 Studio, SIGGRAPH 2014 (2014))
[23] Lowery, L. A.; Sive, H., Strategies of vertebrate neurulation and a re-evaluation of teleost neural tube formation, Mech. Dev., 121, 10, 1189-1197 (2004)
[24] Martin, A. C.; Goldstein, B., Apical constriction: themes and variations on a cellular mechanism driving morphogenesis, Development (Cambridge), 141, 10, 1987-1998 (2014)
[25] Meineke, F. A.; Potten, C. S.; Loeffler, M., Cell migration and organization in the intestinal crypt using a lattice-free model, Cell Prolif., 34, 4, 253-266 (2001)
[26] Metzcar, J.; Wang, Y.; Heiland, R.; Macklin, P., A review of cell-based computational modeling in cancer biology, JCO Clin. Cancer Inform., 3, 1-13 (2019)
[27] Murphy, S. V.; Atala, A., 3D bioprinting of tissues and organs, Nature Biotechnol., 32, 8, 773-785 (2014)
[28] Nishimura, T.; Honda, H.; Takeichi, M., Planar cell polarity links axes of spatial dynamics in neural-tube closure, Cell, 149, 5, 1084-1097 (2012)
[29] Okuda, S.; Inoue, Y.; Eiraku, M.; Sasai, Y.; Adachi, T., Modeling cell proliferation for simulating three-dimensional tissue morphogenesis based on a reversible network reconnection framework, Biomech. Model. Mechanobiol., 12, 5, 987-996 (2013)
[30] Okuda, S.; Inoue, Y.; Eiraku, M.; Sasai, Y.; Adachi, T., Reversible network reconnection model for simulating large deformation in dynamic tissue morphogenesis, Biomech. Model. Mechanobiol., 12, 4, 627-644 (2013)
[31] Osborne, J. M.; Walter, A.; Kershaw, S. K.; Mirams, G. R.; Fletcher, A. G.; Pathmanathan, P.; Gavaghan, D.; Jensen, O. E.; Maini, P. K.; Byrne, H. M., A hybrid approach to multi-scale modelling of cancer, Phil. Trans. R. Soc. A, 368, 1930, 5013-5028 (2010) · Zbl 1211.37113
[32] Pathmanathan, P.; Cooper, J.; Fletcher, A.; Mirams, G.; Murray, P.; Osborne, J.; Pitt-Francis, J.; Walter, A.; Chapman, S. J., A computational study of discrete mechanical tissue models, Phys. Biol., 6, 3 (2009)
[33] Romanazzo, S.; Nemec, S.; Roohani, I., iPSC bioprinting: Where are we at?, Materials, 12, 15, 2453 (2019)
[34] Saye, R. I.; Sethian, J. A.; Lawrence Berkeley National Lab. (LBNL), C. U.S., Voronoi Implicit Interface Method for computing multiphase physics, Proc. Natl. Acad. Sci. - PNAS, 108, 49, 19498-19503 (2011) · Zbl 1256.65082
[35] Shindo, A.; Inoue, Y.; Kinoshita, M.; Wallingford, J. B., PCP-dependent transcellular regulation of actomyosin oscillation facilitates convergent extension of vertebrate tissue, Dev. Biol., 446, 2, 159-167 (2019)
[36] Smith, A. M.; Baker, R. E.; Kay, D.; Maini, P. K., Incorporating chemical signalling factors into cell-based models of growing epithelial tissues, J. Math. Biol., 65, 3, 441-463 (2012) · Zbl 1303.92017
[37] Soumya, S. S.; Gupta, A.; Cugno, A.; Deseri, L.; Dayal, K.; Das, D.; Sen, S.; Inamdar, M. M., Coherent motion of monolayer sheets under confinement and its pathological implications, PLoS Comput. Biol., 11, 12 (2015), arXiv:1507.06481
[38] Staple, D. B.; Farhadifar, R.; Röper, J..; Aigouy, B.; Eaton, S.; Jülicher, F., Mechanics and remodelling of cell packings in epithelia, Eur. Phys. J. E Soft Matter Biol. Phys., 33, 2, 117-127 (2010)
[39] Szabó, B.; Szöllösi, G. J.; Gönci, B.; Jurányi, Z.; Selmeczi, D.; Vicsek, T., Phase transition in the collective migration of tissue cells: Experiment and model, Phys. Rev. E, 74, 6, Article 061908 pp. (2006)
[40] Tada, M.; Heisenberg, C. P., Convergent extension: Using collective cell migration and cell intercalation to shape embryos, Development (Cambridge), 139, 21, 3897-3904 (2012)
[41] Vicsek, T.; Czirók, A.; Ben-Jacob, E.; Cohen, I.; Shochet, O., Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75, 1226-1229 (1995), URL: https://link.aps.org/doi/10.1103/PhysRevLett.75.1226
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.