×

Search for pair-produced vectorlike lepton singlet at the ILC by the XGBoost method. (English) Zbl 1520.81160

Summary: We study the pair production of the vector-like lepton singlet in the \(W \nu_\tau\) channel at the International Linear Collider (ILC) given that \(\sqrt{s} = 500\) GeV. We analyse the characters of the signal and backgrounds. Through the detailed detector simulation and the Extreme Gradient Boosting (XGBoost) method, we obtain the excluding and discovering capabilities. For comparative study, we divide the search into the leptonic channel and the hadronic channel. We find that the statistical significance in the hadronic channel is better than the leptonic channel. The model includes only one free parameter, the vector-like lepton mass \(m_{\tau^\prime}\). Given that the polarized incident beams \(P_{e^-} = 0.8\), \(P_{e^+} = -0.3\), the excluding and discovering capabilities can be given as follows: (1) the ILC can exclude the region \(m_{\tau^\prime}\in[180\,\mathrm{GeV}, 240\,\mathrm{GeV}]\) with an integrated luminosity of \([3.49 \times 10^{-2}, 0.167]\,\mathrm{fb}^{-1}\) (\([0.286, 1.58]\,\mathrm{fb}^{-1})\) in the hadronic channel (leptonic channel); (2) the ILC can discover the region \(m_{\tau^\prime}\in[180\,\mathrm{GeV}, 240\,\mathrm{GeV}]\) with an integrated luminosity of \([0.185 \times 10^{-2}, 1.21]\,\mathrm{fb}^{-1}\) (\([1.74, 9.83]\,\mathrm{fb}^{-1}\)) in the hadronic channel (leptonic channel). These integrated luminosities can be achieved, which are lower than the maximum design integrated luminosity.

MSC:

81U35 Inelastic and multichannel quantum scattering
81V15 Weak interaction in quantum theory
60G35 Signal detection and filtering (aspects of stochastic processes)
81V35 Nuclear physics

Keywords:

luminosity

References:

[1] Aad, G., Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B, 716, 1-29 (2012)
[2] Chatrchyan, S., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B, 716, 30-61 (2012)
[3] Davier, M.; Hoecker, A.; Malaescu, B.; Zhang, Z., A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to \(\boldsymbol{\alpha}( \mathbf{m}_{\mathbf{Z}}^2)\), Eur. Phys. J. C. Eur. Phys. J. C, Eur. Phys. J. C, 80, 3, 410 (2020), Erratum:
[4] Bennett, G. W., Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D, 73, Article 072003 pp. (2006)
[5] Falkowski, A.; Straub, D. M.; Vicente, A., Vector-like leptons: Higgs decays and collider phenomenology, J. High Energy Phys., 05, Article 092 pp. (2014)
[6] He, H.-J.; Polonsky, N.; Su, S.-F., Extra families, Higgs spectrum and oblique corrections, Phys. Rev. D, 64, Article 053004 pp. (2001)
[7] Chen, N.; He, H.-J., LHC: signatures of two-Higgs-doublets with fourth family, J. High Energy Phys., 04, Article 062 pp. (2012)
[8] Chun, E. J.; Kim, J. S., Leptonic precision test of leptophilic two-Higgs-doublet model, J. High Energy Phys., 07, Article 110 pp. (2016)
[9] Cherchiglia, A.; Stöckinger, D.; Stöckinger-Kim, H., Muon g-2 in the 2HDM: maximum results and detailed phenomenology, Phys. Rev. D, 98, Article 035001 pp. (2018)
[10] Thomas, S. D.; Wells, J. D., Phenomenology of massive vectorlike doublet leptons, Phys. Rev. Lett., 81, 34-37 (1998)
[11] Barman, B.; Borah, D.; Mukherjee, L.; Nandi, S., Correlating the anomalous results in \(b \to s\) decays with inert Higgs doublet dark matter and muon \((g - 2)\), Phys. Rev. D, 100, 11, Article 115010 pp. (2019)
[12] Dermisek, R.; Raval, A., Explanation of the muon g-2 anomaly with vectorlike leptons and its implications for Higgs decays, Phys. Rev. D, 88, Article 013017 pp. (2013)
[13] Crivellin, A.; Hoferichter, M., Consequences of chirally enhanced explanations of (g − 2)_μ for h → μμ and Z → μμ, J. High Energy Phys., 07, Article 135 pp. (2021)
[14] Bharadwaj, H.; Dutta, S.; Goyal, A., Leptonic g − 2 anomaly in an extended Higgs sector with vector-like leptons, J. High Energy Phys., 11, Article 056 pp. (2021)
[15] Achard, P., Search for heavy neutral and charged leptons in \(e^+ e^-\) annihilation at LEP, Phys. Lett. B, 517, 75-85 (2001)
[16] Aad, G., Search for heavy lepton resonances decaying to a Z boson and a lepton in pp collisions at \(\sqrt{ s} = 8\) TeV with the ATLAS detector, J. High Energy Phys., 09, Article 108 pp. (2015)
[17] Sirunyan, A. M., Search for vector-like leptons in multilepton final states in proton-proton collisions at \(\sqrt{ s} = 13\) TeV, Phys. Rev. D, 100, 5, Article 052003 pp. (2019)
[18] P. Bambade, et al., The International Linear Collider: a Global Project. 3 2019.
[19] K. Fujii, et al., Tests of the Standard Model at the International Linear Collider. 8 2019.
[20] Chen, T. Q.; Guestrin, C., Xgboost: a scalable tree boosting system (2016), CoRR
[21] Shalev-Shwartz, S.; Ben-David, S., Understanding Machine Learning: From Theory to Algorithms (2014), Cambridge University Press · Zbl 1305.68005
[22] Abdughani, Murat; Ren, Jie; Wu, Lei; Yang, Jin Min; Zhao, Jun, Supervised deep learning in high energy phenomenology: a mini review, Commun. Theor. Phys., 71, 8, 955 (2019) · Zbl 1452.68168
[23] Cornell, A. S.; Doorsamy, W.; Fuks, B.; Harmsen, G.; Mason, L., Boosted decision trees in the era of new physics: a smuon analysis case study, J. High Energy Phys., 04, Article 015 pp. (2022)
[24] D. Alvestad, N. Fomin, J. Kersten, S. Maeland, I. Strümke, Beyond Cuts in Small Signal Scenarios - Enhanced Sneutrino Detectability Using Machine Learning, 8 2021.
[25] Kumar, N.; Martin, S. P., Vectorlike leptons at the large hadron collider, Phys. Rev. D, 92, 11, Article 115018 pp. (2015)
[26] Bhattiprolu, P. N.; Martin, S. P., Prospects for vectorlike leptons at future proton-proton colliders, Phys. Rev. D, 100, 1, Article 015033 pp. (2019)
[27] Lee, B. W.; Quigg, C.; Thacker, H. B., Weak interactions at very high-energies: the role of the Higgs boson mass, Phys. Rev. D, 16, 1519 (1977)
[28] He, H.-J.; Kuang, Y.-P.; Li, X.-Y., Further investigation on the precise formulation of the equivalence theorem, Phys. Rev. D, 49, 4842-4872 (1994)
[29] He, H. J.; Kuang, Y. P.; Yuan, C. P., Estimating the sensitivity of LHC to electroweak symmetry breaking: longitudinal / Goldstone boson equivalence as a criterion, Phys. Rev. D, 55, 3038-3067 (1997)
[30] He, H.-J.; Kilgore, W. B., The Equivalence theorem and its radiative correction - free formulation for all R(xi) gauges, Phys. Rev. D, 55, 1515-1532 (1997)
[31] He, H.-J.; Kuang, Y.-P.; Li, X.-Y., On the precise formulation of equivalence theorem, Phys. Rev. Lett., 69, 2619-2622 (1992)
[32] He, H.-J.; Kuang, Y.-P.; Yuan, C. P., Equivalence theorem and probing the electroweak symmetry breaking sector, Phys. Rev. D, 51, 6463-6473 (1995)
[33] Alloul, A.; Christensen, N. D.; Degrande, C.; Duhr, C.; Fuks, B., FeynRules 2.0 - a complete toolbox for tree-level phenomenology, Comput. Phys. Commun., 185, 2250-2300 (2014)
[34] Degrande, C.; Duhr, C.; Fuks, B.; Grellscheid, D.; Mattelaer, O.; Reiter, T., UFO - the universal FeynRules output, Comput. Phys. Commun., 183, 1201-1214 (2012)
[35] Alwall, J.; Herquet, M.; Maltoni, F.; Mattelaer, O.; Stelzer, T., MadGraph 5: going beyond, J. High Energy Phys., 06, Article 128 pp. (2011) · Zbl 1298.81362
[36] Zyla, P. A., Review of particle physics, PTEP, 2020, 8, Article 083C01 pp. (2020)
[37] Cowan, G.; Cranmer, K.; Gross, E.; Vitells, O., Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C. Eur. Phys. J. C, Eur. Phys. J. C, 73, 2501 (2013), Erratum:
[38] Sjöstrand, T.; Ask, S.; Christiansen, J. R.; Corke, R.; Desai, N.; Ilten, P.; Mrenna, S.; Prestel, S.; Rasmussen, C. O.; Skands, P. Z., An introduction to PYTHIA 8.2, Comput. Phys. Commun., 191, 159-177 (2015) · Zbl 1344.81029
[39] de Favereau, J.; Delaere, C.; Demin, P.; Giammanco, A.; Lemaître, V.; Mertens, A.; Selvaggi, M., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, J. High Energy Phys., 02, Article 057 pp. (2014)
[40] H. Abramowicz, et al., The International Linear Collider Technical Design Report - Volume 4: Detectors. 6 2013.
[41] Cacciari, M.; Salam, G. P.; Soyez, G., FastJet user manual, Eur. Phys. J. C, 72, 1896 (2012) · Zbl 1393.81007
[42] Cacciari, M.; Salam, G. P.; Soyez, G., The anti-\( k_t\) jet clustering algorithm, J. High Energy Phys., 04, Article 063 pp. (2008) · Zbl 1369.81100
[43] Conte, E.; Fuks, B.; Serret, G., MadAnalysis 5, a user-friendly framework for collider phenomenology, Comput. Phys. Commun., 184, 222-256 (2013)
[44] L.L. Shang, Y. Zhang, EasyScan_HEP: a tool for connecting programs to scan parameter space of physics models.
[45] Smith, J.; van Neerven, W. L.; Vermaseren, J. A.M., The transverse mass and width of the W boson, Phys. Rev. Lett., 50, 1738 (1983)
[46] Conte, E.; Dumont, B.; Fuks, B.; Wymant, C., Designing and recasting LHC analyses with MadAnalysis 5, Eur. Phys. J. C, 74, 10, 3103 (2014)
[47] Yang, Y. Q.; Lv, H. J., Discussion of ensemble learning under the era of deep learning (2021), CoRR
[48] Spackman, K. A., Signal detection theory: valuable tools for evaluating inductive learning, (Proceedings of the Sixth International Workshop on Machine Learning (1989), Morgan Kaufmann Publishers Inc.: Morgan Kaufmann Publishers Inc. San Francisco, CA, USA), 160-163
[49] Youden, W. J., Index for rating diagnostic tests, Cancer, 3, 1, 32-35 (1950)
[50] Hastie, T.; Tibshirani, R.; Friedman, J., The Elements of Statistical Learning, Springer Series in Statistics (2001), Springer: Springer New York Inc., New York, NY, USA · Zbl 0973.62007
[51] Shang, L. L.; Wang, M. M.; Heng, Z. X.; Yang, B. F., Search for the singlet vector-like lepton at future \(e^+ e^-\) colliders, Eur. Phys. J. C, 81, 5, 415 (2021)
[52] Li, H. T.; Chao, J. J.; Zhang, G. Q., Search for the singlet vector-like lepton through the pair production in the Wν_τ channel at the ILC, Europhys. Lett., 139, 6, Article 64001 pp. (2022)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.