×

Steerability criteria based on Heisenberg-Weyl observables. (English) Zbl 1520.81021

Summary: Einstein-Podolsky-Rosen (EPR) steering is an intermediate form of nonlocality which interpolates between entanglement and Bell nonlocality. It has been shown that EPR steerable states are fundamental resources for one-sided device-independent quantum information tasks. Nevertheless, distinguishing quantum steerable states from the unsteerable ones in general cases remains a big challenge under active studies. The generalized Bloch representation of density matrices in terms of the Heisenberg observables is a useful tool for analyzing characteristics of quantum systems and plays an important role in quantum information. In this work, the role of this representation in detection of EPR steering is studied. More specifically, based on the correlation matrices of the Heisenberg-Weyl observables, a family of steerability criteria for arbitrary dimensional bipartite systems are proposed. A large class of Hermitian operators, which can conveniently witness steering in some scenarios, are further provided. Finally, these criteria are illustrated through several examples, are compared with some existing ones, and their power and advantages are exhibited in certain cases.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
35R03 PDEs on Heisenberg groups, Lie groups, Carnot groups, etc.
60G35 Signal detection and filtering (aspects of stochastic processes)
81P16 Quantum state spaces, operational and probabilistic concepts
81P45 Quantum information, communication, networks (quantum-theoretic aspects)
30H30 Bloch spaces
Full Text: DOI

References:

[1] Einstein, A.; Podolsky, B.; Rosen, N., Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev., 47, 777 (1935) · Zbl 0012.04201 · doi:10.1103/PhysRev.47.777
[2] Schrödinger, E., Discussion of probability relations between separated systems, Math. Proc. Camb. Phil. Soc., 31, 555 (1935) · JFM 61.1561.03 · doi:10.1017/S0305004100013554
[3] Wiseman, H. M.; Jones, S. J.; Doherty, A. C., Steering, entanglement, nonlocality and the Einstein-Podolsky-Rosen paradox, Phys. Rev. Lett., 98 (2007) · Zbl 1228.81078 · doi:10.1103/PhysRevLett.98.140402
[4] Jones, S. J.; Wiseman, H. M.; Doherty, A. C., Entanglement, Einstein-Podolsky-Rosen correlations, Bell nonlocality and steering, Phys. Rev. A, 76 (2007) · Zbl 1255.81029 · doi:10.1103/PhysRevA.76.052116
[5] Brunner, N.; Cavalcanti, D.; Pironio, S.; Scarani, V.; Wehner, S., Bell nonlocality, Rev. Mod. Phys., 86, 419 (2014) · doi:10.1103/RevModPhys.86.419
[6] Gühne, O.; Tóth, G., Entanglement detection, Phys. Rep., 474, 1 (2009) · doi:10.1016/j.physrep.2009.02.004
[7] Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K., Quantum entanglement, Rev. Mod. Phys., 81, 865 (2009) · Zbl 1205.81012 · doi:10.1103/RevModPhys.81.865
[8] Quintino, M. T.; Vertesi, T.; Cavalcanti, D.; Augusiak, R.; Demianowicz, M.; Acin, A.; Brunner, N., Inequivalence of entanglement, steering and Bell nonlocality for general measurements, Phys. Rev. A, 92 (2015) · doi:10.1103/PhysRevA.92.032107
[9] Bowles, J.; Vertesi, T.; Quintino, M. T.; Brunner, N., One-way Einstein-Podolsky-Rosen steering, Phys. Rev. Lett., 112 (2014) · doi:10.1103/PhysRevLett.112.200402
[10] Bowles, J.; Hirsch, F.; Quintino, M. T.; Brunner, N., Sufficient criterion for guaranteeing that a two-qubit state is unsteerable, Phys. Rev. A, 93 (2016) · doi:10.1103/PhysRevA.93.022121
[11] Branciard, C.; Cavalcanti, E. G.; Walborn, S. P.; Scarani, V.; Wiseman, H. M., One-sided device-independent quantum key distribution: security, feasibility and the connection with steering, Phys. Rev. A, 85 (2012) · doi:10.1103/PhysRevA.85.010301
[12] Reid, M. D., Signifying quantum benchmarks for qubit teleportation and secure quantum communication using Einstein-Podolsky-Rosen steering inequalities, Phys. Rev. A, 88 (2013) · doi:10.1103/PhysRevA.88.062338
[13] He, Q.; Rosales-Zárate, L.; Adesso, G.; Reid, M. D., Secure continuous variable teleportation and Einstein-Podolsky-Rosen steering, Phys. Rev. Lett., 115 (2015) · doi:10.1103/PhysRevLett.115.180502
[14] Piani, M.; Watrous, J., Necessary and sufficient quantum information characterization of Einstein-Podolsky-Rosen steering, Phys. Rev. Lett., 114 (2015) · doi:10.1103/PhysRevLett.114.060404
[15] Sun, K.; Ye, X-J; Xiao, Y.; Xu, X-Y; Wu, Y-C; Xu, J-S; Chen, J-L; Li, C-F; Guo, G-C, Demonstration of Einstein-Podolsky-Rosen steering with enhanced subchannel discrimination, npj Quantum Inf., 4, 12 (2018) · doi:10.1038/s41534-018-0067-1
[16] Passaro, E.; Cavalcanti, D.; Skrzypczyk, P.; Acín, A., Optimal randomness certification in the quantum steering and prepare-and-measure scenarios, New J. Phys., 17 (2015) · Zbl 1452.81028 · doi:10.1088/1367-2630/17/11/113010
[17] Skrzypczyk, P.; Cavalcanti, D., Maximal randomness generation from steering inequality violations using qudits, Phys. Rev. Lett., 120 (2018) · doi:10.1103/PhysRevLett.120.260401
[18] Xiang, Y.; Kogias, I.; Adesso, G.; He, Q., Multipartite Gaussian steering monogamy constraints and quantum cryptography applications, Phys. Rev. A, 95 (2017) · doi:10.1103/PhysRevA.95.010101
[19] Cavalcanti, E. G.; Jones, S. J.; Wiseman, H. M.; Reid, M. D., Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox, Phys. Rev. A, 80 (2009) · doi:10.1103/PhysRevA.80.032112
[20] Saunders, D. J.; Jones, S. J.; Wiseman, H. M.; Pryde, G. J., Experimental EPR-steering using Bell-local states, Nat. Phys., 6, 845 (2010) · doi:10.1038/nphys1766
[21] Zheng, Y-L; Zheng, Y-Z; Chen, Z-B; Liu, N-L; Chen, K.; Pan, J-W, Efficient linear criterion for witnessing Einstein-Podolsky-Rosen nonlocality under many-setting local measurements, Phys. Rev. A, 95 (2017) · doi:10.1103/PhysRevA.95.012142
[22] Walborn, S. P.; Salles, A.; Gomes, R. M.; Toscano, F.; Souto Ribeiro, P. H., Revealing hidden Einstein-Podolsky-Rosen nonlocality, Phys. Rev. Lett., 106 (2011) · doi:10.1103/PhysRevLett.106.130402
[23] Schneeloch, J.; Broadbent, C. J.; Walborn, S. P.; Cavalcanti, E. G.; Howell, J. C., Einstein-Podolsky-Rosen steering inequalities from entropic uncertainty relations, Phys. Rev. A, 87 (2013) · doi:10.1103/PhysRevA.87.062103
[24] Ji, S-W; Lee, J.; Park, J.; Nha, H., Steering criteria via covariance matrices of local observables in arbitrary-dimensional quantum systems, Phys. Rev. A, 92 (2015) · doi:10.1103/PhysRevA.92.062130
[25] Zheng, Y-Z; Zheng, Y-L; Cao, W-F; Li, L.; Chen, Z-B; Liu, N-L; Chen, K., Certifying Einstein-Podolsky-Rosen steering via the local uncertainty principle, Phys. Rev. A, 93 (2016) · doi:10.1103/PhysRevA.93.012108
[26] Costa, A. C S.; Uola, R.; Gühne, O., Steering criteria from general entropic uncertainty relations, Phys. Rev. A, 98 (2018) · doi:10.1103/PhysRevA.98.050104
[27] Kriváchy, T.; Fröwis, F.; Brunner, N., Tight steering inequalities from generalized entropic uncertainty relations, Phys. Rev. A, 98 (2018) · doi:10.1103/PhysRevA.98.062111
[28] Cavalcanti, E. G.; Foster, C. J.; Fuwa, M.; Wiseman, H. M., Analog of the Clauser-Horne-Shimony-Holt inequality for steering, J. Opt. Soc. Am. B, 32, A74 (2015) · doi:10.1364/JOSAB.32.000A74
[29] Girdhar, P.; Cavalcanti, E. G., All two-qubit states that are steerable via Clauser-Horne-Shimony-Holt-type correlations are Bell nonlocal, Phys. Rev. A, 94 (2016) · doi:10.1103/PhysRevA.94.032317
[30] Quan, Q.; Zhu, H.; Fan, H.; Yang, W-L, Einstein-Podolsky-Rosen correlations and Bell correlations in the simplest scenario, Phys. Rev. A, 95 (2017) · doi:10.1103/PhysRevA.95.062111
[31] Kogias, I.; Skrzypczyk, P.; Cavalcanti, D.; Acín, A.; Adesso, G., Hierarchy of steering criteria based on moments for all bipartite quantum systems, Phys. Rev. Lett., 115 (2015) · doi:10.1103/PhysRevLett.115.210401
[32] Moroder, T.; Gittsovich, O.; Huber, M.; Uola, R.; Gühne, O., Steering maps and their application to dimension-bounded steering, Phys. Rev. Lett., 116 (2016) · doi:10.1103/PhysRevLett.116.090403
[33] Jevtic, S.; Hall, M. J W.; Anderson, M. R.; Zwierz, M.; Wiseman, H. M., Einstein-Podolsky-Rosen steering and the steering ellipsoid, J. Opt. Soc. Am. B, 32, A40 (2015) · doi:10.1364/JOSAB.32.000A40
[34] Wollmann, S.; Hall, M. J W.; Patel, R. B.; Wiseman, H. M.; Pryde, G. J., Reference-frame-independent Einstein-Podolsky-Rosen steering, Phys. Rev. A, 98 (2018) · doi:10.1103/PhysRevA.98.022333
[35] Ren, C.; Chen, C., Steerability detection of arbitrary 2-qubit state via machine learning, Phys. Rev. A, 100 (2019) · doi:10.1103/PhysRevA.100.022314
[36] Zhang, L.; Chen, Z.; Fei, S-M, Einstein-Podolsky-Rosen steering based on semisupervised machine learning, Phys. Rev. A, 104 (2021) · doi:10.1103/PhysRevA.104.052427
[37] Uola, R.; Costa, A. C S.; Nguyen, H. C.; Gühne, O., Quantum steering, Rev. Mod. Phys., 92 (2020) · doi:10.1103/RevModPhys.92.015001
[38] Yang, M-C; Qiao, C-F, General schemes for quantum entanglement and steering detction (2022)
[39] Bloch, F., Nuclear induction, Phys. Rev., 70, 460 (1946) · doi:10.1103/PhysRev.70.460
[40] de Vicente, J. I., Separability criteria based on the Bloch representation of density matrices, Quantum Inf. Comput., 7, 624-38 (2007) · Zbl 1152.81835 · doi:10.26421/QIC7.7-5
[41] de Vicente, J. I., Lower bounds on concurrence and separability conditions, Phys. Rev. A, 75 (2007) · doi:10.1103/PhysRevA.75.052320
[42] de Vicente, J. I., Further results on entanglement detection and quantification from the correlation matrix criterion, J. Phys. A: Math. Theor., 41 (2008) · Zbl 1133.81014 · doi:10.1088/1751-8113/41/6/065309
[43] Badziag, P.; Brukner, Č.; Laskowski, W.; Paterek, T.; Żukowski, M., Experimentally friendly geometrical criteria for entanglement, Phys. Rev. Lett., 100 (2008) · doi:10.1103/PhysRevLett.100.140403
[44] Hassan, A. S M.; Joag, P. S., Separability criterion for multipartite quantum states based on the Bloch representation of density matrices, Quantum Inf. Comput., 8, 773-90 (2008) · Zbl 1156.81011 · doi:10.26421/QIC8.8-9-7
[45] de Vicente, J. I.; Huber, M., Multipartite entanglement detection from correlation tensors, Phys. Rev. A, 84 (2011) · doi:10.1103/PhysRevA.84.062306
[46] Laskowski, W.; Markiewicz, M.; Paterek, T.; Żukowski, M., Correlation-tensor criteria for genuine multiqubit entanglement, Phys. Rev. A, 84 (2011) · doi:10.1103/PhysRevA.84.062305
[47] Klöckl, C.; Huber, M., Characterizing multipartite entanglement without shared reference frames, Phys. Rev. A, 91 (2015) · doi:10.1103/PhysRevA.91.042339
[48] Li, M.; Wang, J.; Fei, S-M; Li-Jost, X., Quantum separability criteria for arbitrary-dimensional multipartite states, Phys. Rev. A, 89 (2014) · doi:10.1103/PhysRevA.89.022325
[49] Schwemmer, C.; Knips, L.; Tran, M. C.; de Rosier, A.; Laskowski, W.; Paterek, T.; Weinfurter, H., Genuine multipartite entanglement without multipartite correlations, Phys. Rev. Lett., 114 (2015) · doi:10.1103/PhysRevLett.114.180501
[50] Gamel, O., Entangled Bloch spheres: Bloch matrix and two-qubit state space, Phys. Rev. A, 93 (2016) · doi:10.1103/PhysRevA.93.062320
[51] Shen, S-Q; Yu, J.; Li, M.; Fei, S-M, Improved separability criteria based on Bloch representation of density matrices, Sci. Rep., 6 (2016) · doi:10.1038/srep28850
[52] Sarbicki, G.; Scala, G.; Chruściński, D., Family of multipartite separability criteria based on a correlation tensor, Phys. Rev. A, 101 (2020) · doi:10.1103/PhysRevA.101.012341
[53] Bertlmann, R. A.; Krammer, P., Bloch vectors for qudits, J. Phys. A: Math. Theor., 41 (2008) · Zbl 1140.81321 · doi:10.1088/1751-8113/41/23/235303
[54] Vourdas, A., Quantum systems with finite Hilbert space, Rep. Prog. Phys., 67, 267 (2004) · doi:10.1088/0034-4885/67/3/R03
[55] Massar, S.; Spindel, P., Uncertainty relation for the discrete Fourier transform, Phys. Rev. Lett., 100 (2008) · Zbl 1228.81192 · doi:10.1103/PhysRevLett.100.190401
[56] Namiki, R.; Tokunaga, Y., Discrete Fourier-based correlations for entanglement detection, Phys. Rev. Lett., 108 (2012) · doi:10.1103/PhysRevLett.108.230503
[57] Asadian, A.; Budroni, C.; Steinhoff, F. E S.; Rabl, P.; Gühne, O., Contextuality in phase space, Phys. Rev. Lett., 114 (2015) · doi:10.1103/PhysRevLett.114.250403
[58] Cotfas, N.; Dragoman, D., Properties of finite Gaussians and the discrete-continuous transition, J. Phys. A: Math. Theor., 45 (2012) · Zbl 1257.81020 · doi:10.1088/1751-8113/45/42/425305
[59] Asadian, A.; Erker, P.; Huber, M.; Klöckl, C., Heisenberg-Weyl observables: Bloch vectors in phase space, Phys. Rev. A, 94 (2016) · doi:10.1103/PhysRevA.94.010301
[60] Babazadeh, A.; Erhard, M.; Wang, F.; Malik, M.; Nouroozi, R.; Krenn, M.; Zeilinger, A., High-dimensional single-photon quantum gates: concepts and experiments, Phys. Rev. Lett., 119 (2017) · doi:10.1103/PhysRevLett.119.180510
[61] Gu, X.; Krenn, M.; Erhard, M.; Zeilinger, A., Gouy phase radial mode sorter for light: concepts and experiments, Phys. Rev. Lett., 120 (2018) · doi:10.1103/PhysRevLett.120.103601
[62] Chang, J.; Cui, M.; Zhang, T.; Fei, S-M, Separability criteria based on Heisenberg-Weyl representation of density matrices, Chin. Phys. B, 27 (2018) · doi:10.1088/1674-1056/27/3/030302
[63] Pălici, A. M.; Isdrailă, T-A; Ataman, S.; Ionicioiu, R., OAM tomography with Heisenberg-Weyl observables, Quantum Sci. Technol., 5 (2020) · doi:10.1088/2058-9565/ab9e5b
[64] Zhao, H.; Yang, Y.; Jing, N.; Wang, Z-X; Fei, S-M, Detection of multipartite entanglement based on Heisenberg-Weyl representation of density matrices, Int. J. Theor. Phys., 61, 136 (2022) · Zbl 1497.81024 · doi:10.1007/s10773-022-05123-9
[65] Gühne, O.; Mechler, M.; Tóth, G.; Adam, P., Entanglement criteria based on local uncertainty relations are strictly stronger than the computable cross norm criterion, Phys. Rev. A, 74 (2006) · doi:10.1103/PhysRevA.74.010301
[66] Horn, R. A.; Johnson, C. R., Topics in Matrix Analysis (1991), Cambridge: Cambridge University Press, Cambridge · Zbl 0729.15001
[67] Peres, A., Separability criterion for density matrices, Phys. Rev. Lett., 77, 1413 (1996) · Zbl 0947.81003 · doi:10.1103/PhysRevLett.77.1413
[68] He, Q.; Reid, M. D., Genuine multipartite Einstein-Podolsky-Rosen steering, Phys. Rev. Lett., 111 (2013) · doi:10.1103/PhysRevLett.111.250403
[69] Li, C-M; Chen, K.; Chen, Y-N; Zhang, Q.; Chen, Y-A; Pan, J-W, Genuine high-order Einstein-Podolsky-Rosen steering, Phys. Rev. Lett., 115 (2015) · doi:10.1103/PhysRevLett.115.010402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.