×

2D continuous Chebyshev-Galerkin time-spectral method. (English) Zbl 1520.76058

Summary: A fully spectral multi-domain method has been developed and applied to three applications within ideal MHD, compressible Navier-Stokes, and a two-fluid plasma turbulence model named the Weiland model. The time-spectral method employed is the Generalized Weighted Residual Method (GWRM), where all domains such as space, time, and parameter space are spectrally decomposed with Chebyshev polynomials. The spectral decomposition of the temporal domain allows the GWRM to reach spectral accuracy in all dimensions. The GWRM linear/nonlinear algebraic equations are solved using an Anderson Acceleration (AA) method and a newly developed Quasi Semi-Implicit root solver (Q-SIR). Up to 85% improved convergence rate was obtained for Q-SIR as compared to AA and in certain cases only Q-SIR converged. In the most challenging simulations, featuring steep gradients, the GWRM converged for time intervals roughly two times larger than typical time steps for explicit time-marching schemes, being limited by the CFL condition. Time intervals up to 70 times larger than those of explicit time-marching schemes were used in smooth regions. Furthermore, the most computationally expensive algorithm, namely the product of two Chebyshev series, has been GPU accelerated with speedup gains of several thousands compared to a CPU.

MSC:

76M22 Spectral methods applied to problems in fluid mechanics
76N06 Compressible Navier-Stokes equations
76W05 Magnetohydrodynamics and electrohydrodynamics
76X05 Ionized gas flow in electromagnetic fields; plasmic flow

References:

[1] Gander, M.; Kwok, F., J. Soc. Ind. Appl. Math. (2018)
[2] Gottlieb, D.; Orszag, S. T., J. Soc. Ind. Appl. Math. (1977)
[3] Canuto, C.; Quarteroni, A.; Hussaini, M. Y.; Zang, T. A., Spectral Methods in Fluid Dynamics (1988), Springer-Verlag · Zbl 0658.76001
[4] Kopriva, D., Implementing Spectral Methods for Partial Differential Equations (2009), Springer: Springer Dordrecht · Zbl 1172.65001
[5] Costa, B.; Don, W. S., J. Comput. Phys., 224 (2007)
[6] Shu, C.-W., SIAM Rev., 51 (2009)
[7] Cockburn, B.; Shu, C.-W., Math. Comput., 52 (1989)
[8] Cai, W.; Gottlieb, D.; Shu, C.-W., Math. Comput., 52, 389-410 (1989) · Zbl 0666.65067
[9] Tohidi, E., Ain Shams Eng. J., 6, 373-379 (2015)
[10] Rasetarinera, P.; Hussaini, M. Y., J. Comput. Phys., 172, 718-738 (2001) · Zbl 0986.65093
[11] Kurihara, Y., Mon. Weather Rev., 93 (1965)
[12] Robert, A.; Henderson, J.; Turnbull, C., Mon. Weather Rev., 100 (1972)
[13] Fezoui, L., J. Comput. Phys., 84 (1989)
[14] Tal-Ezer, H., SIAM J. Numer. Anal., 23 (1986) · Zbl 0613.65091
[15] Tal-Ezer, H., SIAM J. Numer. Anal., 26 (1989) · Zbl 0668.65090
[16] Luo, Y., J. Comput. Sci., 12 (1997)
[17] Delic, G., J. Math. Phys., 28 (1987)
[18] Dutt, P., SIAM J. Numer. Anal., 27 (1990)
[19] Bar-Yoseph, P.; Zrahia, U., Comput. Methods Appl. Mech. Eng., 116 (1994) · Zbl 0831.65104
[20] Tangand, J.-G.; Ma, H.-P., Appl. Numer. Math., 57 (2007) · Zbl 1175.65121
[21] Yang, W.; Liu, F.; Turner, I., Int. J. Differ. Equ., 2009 (2010)
[22] Wang, L.; Persson, P.-O., Comput. Fluids, 118 (2015)
[23] Cangiani, A.; Dong, Z.; Georgoulis, E. H., SIAM J. Sci. Comput., 39 (2017)
[24] Pei, C.; Sussman, M.; Hussaini, M. Y., Int. J. Comput. Methods, 16 (2019)
[25] Kirk, K. L.A.; Horvath, T.; Cesmelioglu, A.; Rhebergen, S., SIAM J. Numer. Anal., 57 (2019)
[26] Scheffel, J., (Jang, C. L., Partial Differential Equations (2011), Nova Science Publishers, Inc.)
[27] Scheffel, J., Am. J. Comput. Math., 2, 173-193 (2012)
[28] Riva, F.; Milanese, L.; Ricci, P., Phys. Plasmas, 24 (2017)
[29] Dedner, A.; Kemm, F.; Kröner, D.; Munz, C.-D.; Schnitzer, T.; Wesenberg, M., J. Comput. Phys., 175, 645-673 (2002) · Zbl 1059.76040
[30] Nordman, H.; Weiland, J.; Jarmén, A., Nucl. Fusion, 30 (1990)
[31] Weiland, J.; Nordman, H., Phys. Fluids, B Plasma Phys., 5 (1993)
[32] Nordman, H.; Pavlenko, V.; Weiland, J., Phys. Fluids, 5 (1993)
[33] Weiland, J. (1999), CRC Press
[34] Lindvall, K., Time Spectral Methods - Towards Plasma Turbulence Modelling (2021), Doctoral thesis
[35] Scheffel, J.; Mirza, A. A., Am. J. Comput. Math., 2 (2011)
[36] Scheffel, J.; Håkansson, C., Appl. Numer. Math., 59 (2009)
[37] Byrd, R. H.; Liu, D. C.; Nocedal, J., SIAM J. Optim., 2 (1992)
[38] Broyden, C. G.; Dennis, J. E.; Moré, J. J., IMA J. Appl. Math., 12 (1973)
[39] Broyden, C. G., Math. Program., Ser. B, 87 (2000) · Zbl 0970.90002
[40] Huang, W.; Gallivan, K. A.; Absil, P.-A., SIAM J. Optim., 25 (2015) · Zbl 1461.65156
[41] Anderson, D. G., J. ACM, 12 (1965)
[42] Walker, H.; Ni, P., SIAM J. Numer. Anal., 49 (2011)
[43] Henderson, N. C.; Varadhan, R., J. Comput. Graph. Stat., 28 (2019) · Zbl 07499046
[44] Walker, H., Anderson Acceleration: Algorithms and Implementations (2011), Worcester Polytechnic Institute Mathematical Sciences Department, Research Report
[45] Cook, A. W.; Cabot, W. H., J. Comput. Phys., 203 (2005)
[46] Persson, P-O.; Peraire, J., (44th AIAA Aerospace Sciences Meeting and Exhibit (2006))
[47] Chan, T. F.; Osher, S.; Shen, J., IEEE Trans. Image Process., 10 (2001)
[48] Sarra, S. A., Comput. Math. Appl., 52 (2006) · Zbl 1155.90301
[49] Sarra, S. A., Numer. Algorithms, 41 (2006)
[50] Meister, A.; Ortleb, S.; Sonar, Th., Numer. Methods Partial Differ. Equ., 26 (2012) · Zbl 1251.65141
[51] Orszag, S. A.; Tang, C.-M., J. Fluid Mech., 90 (1977)
[52] Weiland, J., Stability and Transport in Magnetic Confinement Systems (2012), Springer: Springer New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.