×

Probing porosity in metals by electrical conductivity: nanoscale experiments and multiscale simulations. (English) Zbl 1520.74022

Summary: Motivated by the significant influence of the underlying microstructure on the effective electrical properties of a material system and the desire to monitor defect evolution through non-destructive electrical characterisation, this contribution is concerned with a detailed study of conductivity changes caused by the presence of sub-microscale pores. Reducing the complexity of the material system, geometrically well-defined pore arrays are created by focused ion beam (FIB) milling in Cu thin films and characterised by 4-point probe electrical measurements. The experiment is designed such that it reduces to a (quasi-)one-dimensional electrical problem which is amenable to analytical techniques when invoking a computational homogenisation scheme to approximate the effective electrical properties of a given microstructure. The applicability of the proposed approach is shown in a first step by comparing simulation results for different pore volume fractions and pore shapes against their experimental counterparts. In a second step, a sensitivity analysis of the experimental data is carried out and the usefulness of the proposed modelling approach in interpreting the experimental data is demonstrated. In particular, the findings suggest that the proposed experimental method allows (at best) the determination of pore volume fractions with an accuracy of \(\pm 0.5\)%.

MSC:

74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74Q15 Effective constitutive equations in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
74F15 Electromagnetic effects in solid mechanics
74-05 Experimental work for problems pertaining to mechanics of deformable solids

References:

[1] Arenas, C.; Henriquez, R.; Moraga, L.; Muñoz, E.; Munoz, R. C., The effect of electron scattering from disordered grain boundaries on the resistivity of metallic nanostructures, Appl. Surf. Sci., 329, 184-196 (2015)
[2] Bakhtiyarov, S. I.; Overfelt, R. A., Effect of porosity and metallic insertions on electrical resistivity of A2011 aluminium alloy, Mater. Sci. Technol., 20, 6, 790-794 (2004)
[3] Bakonyi, I., Accounting for the resistivity contribution of grain boundaries in metals: critical analysis of reported experimental and theoretical data for Ni and Cu, Eur. Phys. J. Plus, 136, 4, 410 (2021)
[4] Basinski, Z. S.; Dugdale, J. S.; Howie, A., The electrical resistivity of dislocations, Phil. Mag., 8, 96, 1989-1997 (1963)
[5] Berthelsen, R.; Denzer, R.; Oppermann, P.; Menzel, A., Computational homogenisation for thermoviscoplasticity: Application to thermally sprayed coatings, Comput. Mech., 60, 5, 739-766 (2017) · Zbl 1387.74094
[6] Berthelsen, R.; Menzel, A., Computational homogenisation of thermo-viscoplastic composites: Large strain formulation and weak micro-periodicity, Comput. Methods Appl. Mech. Engrg., 348, 575-603 (2019) · Zbl 1433.74092
[7] Bishara, H.; Ghidelli, M.; Dehm, G., Approaches to measure the resistivity of grain boundaries in metals with high sensitivity and spatial resolution: A case study employing Cu, ACS Appl. Electron. Mater., 2, 7, 2049-2056 (2020)
[8] Bishara, H.; Lee, S.; Brink, T.; Ghidelli, M.; Dehm, G., Understanding grain boundary electrical resistivity in Cu: The effect of boundary structure, ACS Nano, 15, 10, 16607-16615 (2021)
[9] Coenen, E. W.C.; Kouznetsova, V. G.; Bosco, E.; Geers, M. G.D., A multi-scale approach to bridge microscale damage and macroscale failure: a nested computational homogenization-localization framework, Int. J. Fract., 178, 157-178 (2012)
[10] Cordil, M. J.; Glushko, O.; Kleinbichler, A.; Putz, B.; Többens, D. M.; Kirchlechner, C., Microstructural influence on the cyclic electro-mechanical behaviour of ductile films on polymer substrates, Thin Solid Films, 644, 166-172 (2017)
[11] Cordill, M. J.; Glushko, O.; Putz, B., Electro-mechanical testing of conductive materials used in flexible electronics, Front. Mater., 3, 1-11 (2016)
[12] Feyel, F.; Chaboche, J.-L., FE \({}^2\) multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials, Comput. Methods Appl. Mech. Engrg., 183, 3, 309-330 (2000) · Zbl 0993.74062
[13] Gall, D., The search for the most conductive metal for narrow interconnect lines, J. Appl. Phys., 127, 5, Article 050901 pp. (2020)
[14] Gao, K.; van Dommelen, J. A.W.; Geers, M. G.D., Investigation of the effects of the microstructure on the sound absorption performance of polymer foams using a computational homogenization approach, Eur. J. Mech. A Solids, 61, 330-344 (2017)
[15] Geers, M. G.; Kouznetsova, V. G.; Brekelmans, W. A.M., Multi-scale computational homogenization: Trends and challenges, J. Comput. Appl. Math., 234, 7, 2175-2182 (2010) · Zbl 1402.74107
[16] He, R.; Ma, H.; Hafiz, R. B.; Fu, C.; Jin, X.; He, J., Determining porosity and pore network connectivity of cement-based materials by a modified non-contact electrical resistivity measurement: Experiment and theory, Mater. Des., 156, 82-92 (2018)
[17] Javili, A.; Steinmann, P.; Mosler, J., Micro-to-macro transition accounting for general imperfect interfaces, Comput. Methods Appl. Mech. Engrg., 317, 274-317 (2017) · Zbl 1439.74333
[18] Kaiser, T.; Cordill, M. J.; Kirchlechner, C.; Menzel, A., Electrical and mechanical behaviour of metal thin films with deformation-induced cracks predicted by computational homogenisation, Int. J. Fract., 231, 2, 223-242 (2021)
[19] Kaiser, T.; Menzel, A., An electro-mechanically coupled computational multiscale formulation for electrical conductors, Arch. Appl. Mech., 91, 1509-1526 (2021) · Zbl 1486.74045
[20] Kaiser, T.; Menzel, A., A finite deformation electro-mechanically coupled computational multiscale formulation for electrical conductors, Acta Mech., 232, 3939-3956 (2021) · Zbl 1486.74045
[21] Keip, M.-A.; Steinmann, P.; Schröder, J., Two-scale computational homogenization of electro-elasticity at finite strains, Comput. Methods Appl. Mech. Engrg., 278, 62-79 (2014) · Zbl 1423.74788
[22] Khalaquzzaman, M.; Xu, B.-X.; Ricker, S.; Müller, R., Computational homogenization of piezoelectric materials using FE2 to determine configurational forces, Technische Mechanik, 32, 1, 21-37 (2012)
[23] Kiener, D.; Motz, C.; Rester, M.; Jenko, M.; Dehm, G., FIB damage of Cu and possible consequences for miniaturized mechanical tests, Mater. Sci. Eng. A, 459, 1, 262-272 (2007)
[24] Kouznetsova, V. G.; Brekelmans, W. A.M.; Baaijens, F. P.T., An approach to micro-macro modeling of heterogeneous materials, Comput. Mech., 27, 1, 37-48 (2001) · Zbl 1005.74018
[25] Lewińska, M. A.; Kouznetsova, V. G.; van Dommelen, J. A.W.; Geers, M. G.D., Computational homogenisation of acoustic metafoams, Eur. J. Mech. A Solids, 77, Article 103805 pp. (2019) · Zbl 1472.74063
[26] Liu, P. S.; Li, T. F.; Fu, C., Relationship between electrical resistivity and porosity for porous metals, Mater. Sci. Eng. A, 268, 1, 208-215 (1999)
[27] Martin, J. W.; Paetsch, R., Electrical resistivity of voids, J. Phys. F: Metal Phys., 3, 5, 907-917 (1973)
[28] Miehe, C.; Schotte, J.; Schröder, J., Computational micro-macro transitions and overall moduli in the analysis of polycrystals at large strains, Comput. Mater. Sci., 16, 1, 372-382 (1999)
[29] Muhammad, Q. K.; Bishara, H.; Porz, L.; Dietz, C.; Ghidelli, M.; Dehm, G.; Frömling, T., Dislocation-mediated electronic conductivity in rutile, Mater. Today Nano, 17, Article 100171 pp. (2022)
[30] Özdemir, I.; Brekelmans, W. A.M.; Geers, M. G.D., FE \({}^2\) computational homogenization for the thermo-mechanical analysis of heterogeneous solids, Comput. Methods Appl. Mech. Engrg., 198, 3, 602-613 (2008) · Zbl 1228.74065
[31] Polder, R. B., Test methods for on site measurement of resistivity of concrete – a RILEM TC-154 technical recommendation, Constr. Build. Mater., 15, 2, 125-131 (2001)
[32] Renard, J.; Marmonier, M. F., Etude de l’initiation de l’endommagement dans la matrice d’un matériau composite par une méthode d’homogénéisation, Aerosp. Sci. Technol., 6, 43-51 (1987)
[33] Ricker, S.; Mergheim, J.; Steinmann, P.; Müller, R., A comparison of different approaches in the multi-scale computation of configurational forces, Int. J. Fract., 166, 203-214 (2010) · Zbl 1203.74149
[34] Schröder, J., Derivation of the localization and homogenization conditions for electro-mechanically coupled problems, Comput. Mater. Sci., 46, 3, 595-599 (2009)
[35] Sengupta, A.; Papadopoulos, P.; Taylor, R. L., A multiscale finite element method for modeling fully coupled thermomechanical problems in solids, Internat. J. Numer. Methods Engrg., 91, 13, 1386-1405 (2012)
[36] Stelzer, B.; Momma, M.; Schneider, J. M., Autonomously self-reporting hard coatings: Tracking the temporal oxidation behavior of TiN by in situ sheet resistance measurements, Adv. Funct. Mater., 30, 13, Article 2000146 pp. (2020)
[37] Suquet, P. M., Local and global aspects in the mathematical theory of plasticity, (Sawczuck, A.; Bianchi, G., Plasticity Today: Modelling, Methods and Applications (1985), Springer Netherlands, Dordrecht), 279-310 · Zbl 0556.73036
[38] Temizer, İ.; Wriggers, P., Homogenization in finite thermoelasticity, J. Mech. Phys. Solids, 59, 2, 344-372 (2011) · Zbl 1270.74059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.