×

Area-minimizing minimal graphs over linearly accessible domains. (English) Zbl 1520.49018

Summary: It is well known that minimal surfaces over convex domains are always globally area-minimizing, which is not necessarily true for minimal surfaces over non-convex domains. Recently, M. Dorff, D. Halverson, and G. Lawlor proved that minimal surfaces over a bounded linearly accessible domain \(D\) of order \(\beta\) for some \(\beta \in (0, 1)\) must be globally area-minimizing, provided a certain geometric inequality is satisfied on the boundary of \(D\). In this article, we prove sufficient conditions for a sense-preserving harmonic function \(f=h+\overline{g}\) to be linearly accessible of order \(\beta\). Then, we provide a method to construct harmonic polynomials which maps the open unit disk \(\vert z \vert < 1\) onto a linearly accessible domain of order \(\beta\). Using these harmonic polynomials, we construct one parameter families of globally area-minimizing minimal surfaces over non-convex domains.

MSC:

49Q05 Minimal surfaces and optimization
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
30C55 General theory of univalent and multivalent functions of one complex variable
31B05 Harmonic, subharmonic, superharmonic functions in higher dimensions
Full Text: DOI

References:

[1] Clunie, JG; Sheil-Small, T., Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A.I., 9, 3-25 (1984) · Zbl 0506.30007
[2] Duren, P., Univalent Functions (Grundlehren der mathematischen Wissenschaften) (1983), New York: Springer, New York · Zbl 0514.30001
[3] Duren, P., Harmonic Mappings in the Plane (2004), Cambridge: Cambridge University Press, Cambridge · Zbl 1055.31001 · doi:10.1017/CBO9780511546600
[4] Dorff, M.; Halverson, D.; Lawlor, G., Area-minimizing minimal graphs over nonconvex domains, Pacific J. Math., 210, 2, 229-259 (2003) · Zbl 1046.49030 · doi:10.2140/pjm.2003.210.229
[5] Fejér, L., Neue Eigenschaften der Mittelwerte bei den Fourierreihen, J. Lond. Math. Soc., 1, 1, 53-62 (1933) · Zbl 0006.25701 · doi:10.1112/jlms/s1-8.1.53
[6] Hernández, R.; Martín, MJ, Stable geometric properties of analytic and harmonic functions, Math. Proc. Camb. Philos. Soc., 155, 2, 343-359 (2013) · Zbl 1283.30028 · doi:10.1017/S0305004113000340
[7] Halverson, D.; Lawlor, G., Area-minimizing subsurfaces of Scherk’s singly periodic surface and the catenoid, Calc. Var. Partial Differ. Equ., 25, 2, 257-273 (2006) · Zbl 1106.49050 · doi:10.1007/s00526-005-0361-6
[8] Kaplan, W., Close-to-convex Schlicht functions, Michigan Math. J., 1, 169-185 (1952) · Zbl 0048.31101 · doi:10.1307/mmj/1028988895
[9] Kaplan, W., Convexity and the Schwarz-Christoffel mapping, Michigan Math. J., 40, 2, 217-227 (1993) · Zbl 0786.30008 · doi:10.1307/mmj/1029004749
[10] Koepf, W., On close-to-convex functions and linearly accessible domains, Complex Variables Theory Appl., 11, 3-4, 269-279 (1989) · Zbl 0679.30007 · doi:10.1080/17476938908814345
[11] Lewandowski, Z., Sur l’identité de certaines classes de fonctions univalentes I, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 12, 131-146 (1958)
[12] Morgan, F., Geometric Measure Theory (1995), San Diego: Academic Press Inc, San Diego · Zbl 0819.49024
[13] Ponnusamy, S.; Kaliraj, A., Sairam, Univalent harmonic mappings convex in one direction, Anal. Math. Phys., 4, 3, 221-236 (2014) · Zbl 1309.31004 · doi:10.1007/s13324-013-0066-5
[14] Reade, MO, The coefficients of close-to-convex functions, Duke Math. J., 23, 459-462 (1956) · Zbl 0070.29903 · doi:10.1215/S0012-7094-56-02342-0
[15] Ruscheweyh, S.; Sheil-Small, T., Hadamard products of Schlicht functions and the Pólya-Schoenberg conjecture, Comment. Math. Helv., 48, 119-135 (1973) · Zbl 0261.30015 · doi:10.1007/BF02566116
[16] Ruscheweyh, S.; Salinas, L., On the preservation of direction-convexity and the Goodman-Saff conjecture, Ann. Acad. Sci. Fenn. Math.,, 14, 1, 63-73 (1989) · Zbl 0674.30009 · doi:10.5186/aasfm.1989.1427
[17] Sairam Kaliraj, A., On De la Vallée Poussin means for harmonic mappings, Monatsh. Math., 198, 3, 547-564 (2022) · Zbl 1495.31003 · doi:10.1007/s00605-021-01660-3
[18] Sairam Kaliraj, A., Jaglan, K.: On Cesàro means for harmonic mappings, https://www.researchgate.net/publication/361982222 (preprint)
[19] Temme, NM, Special Functions (1996), New York: Wiley, New York · Zbl 0856.33001 · doi:10.1002/9781118032572
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.