×

Kernels of unbounded Toeplitz operators and factorization of symbols. (English) Zbl 1520.47061

Let \(\mathbb{C}^+\) denote the upper half-plane and, for \(p>1\), let \(H^+_p:=H^p(\mathbb{C}^{+})\) be the Hardy space of \(\mathbb{C}^{+}\) and let \(H_p^-:=\overline{H^+_p}\). For a function \(g\), measurable on \(\mathbb{R}\), the Toeplitz operator \(T_g\) with symbol \(g\) is defined on the domain \[D(T_g)=\{f\in H^{+}_p:\, gf\in L^p(\mathbb{R})\}\] by the formula \[T_g f=P^+( gf),\] where \(P^+\) is the Riesz projection from \(L^p(\mathbb{R})\) onto \(H^{+}_p\). Let \(\sigma_p\) be the set of all measurable functions \(g\) on \(\mathbb{R}\) for which \(D(T_g)\not=\{0\}\).
The authors study kernels of unbounded Toeplitz operators in \(H^{+}_p\) with symbols in \(\sigma_p\). The authors give a necessary condition for the kernel of the Toeplitz operator to be non-trivial. The authors examine if, for a given function from \(H^{+}_p\), there exists a minimal Toeplitz kernel containing that function.
Denote \(\lambda_{\pm}(\xi)=\xi\pm i\) and \(r(\xi)=\frac{\xi-i}{\xi+i}\) for \(\xi\in\mathbb{R}\). For a symbol \(g\) admitting a \((q,p')\)-factorization, (\(1<p\leq q<\infty\), \(1/p+1/p'=1\)), that is, \[g=g_{-}r^kg_{+} \text{with } k\in\mathbb{Z},\] where \[g_{-}\in \lambda_{-}H_q^{-},\ g_{-}^{-1}\in \lambda_{-}H_{p'}^{-},\ g_{+}\in \lambda_{+}H_{p'}^{+},\ g_{+}^{-1}\in \lambda_{+}H_{q}^{+},\] the authors describe the kernel of the Toeplitz operator \(T_g\). If, additionally, the symbol \(g\) belongs to \(L^\infty\), they also describe the kernel of the adjoint \(T_g^*\).
To describe kernels of Toeplitz operators with piecewise continuous symbols, the authors study the “relation between kernels of the Toeplitz operators whose symbols differ by a factor which” is a non-integer power of \(r\).

MSC:

47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
47A68 Factorization theory (including Wiener-Hopf and spectral factorizations) of linear operators
45E10 Integral equations of the convolution type (Abel, Picard, Toeplitz and Wiener-Hopf type)

References:

[1] Ahlfors, L., Complex Analysis (1979), New York: Mc Graw-Hill International Book Company, New York · Zbl 0395.30001
[2] Benhida, C.; Câmara, MC; Diogo, C., Some properties of the kernel and the cokernel of Toeplitz operators with matrix symbols, Linear Algebra Appl., 432, 1, 307-317 (2010) · Zbl 1183.47021 · doi:10.1016/j.laa.2009.08.010
[3] Câmara, MC, Toeplitz operators and Wiener-Hopf factorisation: an introduction, Concr. Oper., 4, 1, 130-145 (2017) · Zbl 1392.45007 · doi:10.1515/conop-2017-0010
[4] Câmara, MC; Diogo, C.; Rodman, L., Fredholmness of Toeplitz operators and corona problems, J. Funct. Anal., 5, 259, 1273-1299 (2010) · Zbl 1205.47026 · doi:10.1016/j.jfa.2010.04.013
[5] Câmara, MC; Malheiro, MT; Partington, JR, Model spaces and Toeplitz kernels in reflexive Hardy spaces, Oper. Matrices, 10, 1, 127-148 (2016) · Zbl 1372.47036 · doi:10.7153/oam-10-09
[6] Câmara, MC; Partington, JR, Near invariance and kernels of Toeplitz operators, J. d’Anal. Math., 124, 235-260 (2014) · Zbl 1325.47061 · doi:10.1007/s11854-014-0031-8
[7] Câmara, MC; Partington, JR, Multipliers and equivalences between Toeplitz kernels, J. Math. Anal. Appl., 465, 1, 557-570 (2018) · Zbl 1391.42010 · doi:10.1016/j.jmaa.2018.05.023
[8] Duduchava, R., Integral Equations in Convolution with Discontinuous Symbols (1979), Leipzig: Teubner, Leipzig · Zbl 0429.45002
[9] Duren, P., Theory of \(H_p\) Spaces (1970), New York: Academic Press, New York · Zbl 0215.20203
[10] Gohberg, I.; Krupnik, NY, Einführung in die Theorie der eindimensionalen singulären Integraloperatoren (1979), Basel: Birkhäuser, Basel · Zbl 0413.47040 · doi:10.1007/978-3-0348-5555-6
[11] Hartmann, A., Mitkovski, M.: Kernels of Toeplitz operators. In: Recent Progress on Operator Theory and Approximation in Spaces of Analytic Functions, vol. 679, pp. 147-177 (2016). Book Series: Contemporary Mathematics · Zbl 1375.30084
[12] Hayashi, E., The kernel of a Toeplitz operator, Integr. Equ. Oper. Theory, 9, 4, 588-591 (1986) · Zbl 0636.47023 · doi:10.1007/BF01204630
[13] Helson, H.: Large analytic functions. Linear Operators in Function Spaces (Timisoara, 1988), pp. 209-216. Operator Theory Advances and Applications, vol. 43. Birkhäuser, Basel (1990) · Zbl 0692.30031
[14] Hitt, D., Invariant subspaces of \({{\cal{H}}}^2\) of an annulus, Pac. J. Math., 134, 1, 101-120 (1988) · Zbl 0662.30035 · doi:10.2140/pjm.1988.134.101
[15] Kalandya, AI, Mathematical Methods of Two-Dimensional Elasticity (1975), Moscow: Mir Publishers, Moscow
[16] Koosis, P., Introduction to \(H_p\) Spaces (1998), Cambridge: Cambridge University Press, Cambridge · Zbl 1024.30001
[17] Litvinchuk, GS; Spitkovskii, IM, Factorization of Measurable Matrix Functions OT 25 (1987), Basel: Birkhäuser, Basel · Zbl 0651.47010 · doi:10.1007/978-3-0348-6266-0
[18] Mikhlin, SG; Prossdorf, S., Singular Integral Operators (1986), Berlin: Springer, Berlin · Zbl 0612.47024 · doi:10.1007/978-3-642-61631-0
[19] Nikolski, N.K.: Operators, functions, and systems: an easy reading, vol. 1. Mathematical Surveys and Monographs, vol. 92. American Mathematical Society, Providence (2002) · Zbl 1007.47002
[20] Sarason, D., Unbounded Toeplitz Operators, Integr. Equ. Oper. Theory, 61, 2, 281-298 (2008) · Zbl 1155.47033 · doi:10.1007/s00020-008-1588-3
[21] Schneider, R., Integral equations with piecewise continuous coefficients in \(L_p\) spaces with weight, J. Int. Equ., 9, 135-152 (1985) · Zbl 0573.45001
[22] Seubert, SM, Unbounded dissipative compressed Toeplitz operators, J. Math. Anal. Appl., 290, 132-146 (2004) · Zbl 1059.47031 · doi:10.1016/j.jmaa.2003.09.016
[23] Suárez, D., Closed commutants of the backward shift operator, Pac. J. Math., 179, 371-396 (1997) · Zbl 0895.47021 · doi:10.2140/pjm.1997.179.371
[24] Thelen, G.: Zur Fredholmtheorie singularer Integro-differentialoperatoren auf der Halbachse. Dissert. TH Darmstadt, 1985, 125 S · Zbl 0575.47033
[25] Varley, E.; Walker, JD, A method for solving singular integro-differential equations, IMA J. Appl. Math., 43, 11-45 (1989) · Zbl 0687.45006 · doi:10.1093/imamat/43.1.11
[26] Widom, H., Singular integral equations in \(L_p\), Trans. Am. Math. Soc., 97, 131-160 (1960) · Zbl 0109.33002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.