×

Natural transformations for quasigroupoids. (English) Zbl 1520.20127

Summary: In this paper, we introduce the notions of natural transformation between morphisms of quasigroupoids and between morphisms of weak Hopf quasigroups. Also, we prove that natural transformations between morphisms of finite quasigroupoids come from natural transformations between morphisms of weak Hopf quasigroups and, on the other hand, we obtain that every natural transformation for morphisms defined between pointed cosemisimple weak Hopf quasigroups comes from a natural transformation between finite quasigroupoids.

MSC:

20N05 Loops, quasigroups
16T05 Hopf algebras and their applications
Full Text: DOI

References:

[1] E. Abe, Hopf Algebras, Cambridge Tracts in Math. 74, Cambridge University, Cambridge, 1980. · Zbl 0476.16008
[2] J. N. Alonso Álvarez, J. M. Fernández Vilaboa and R. González Rodríguez, A characterization of weak Hopf (co) quasigroups, Mediterr. J. Math. 13 (2016), no. 5, 3747-3764. · Zbl 1368.16041
[3] J. N. Alonso Álvarez, J. M. Fernández Vilaboa and R. González Rodríguez, Cleft and Galois extensions associated with a weak Hopf quasigroup, J. Pure Appl. Algebra 220 (2016), no. 3, 1002-1034. · Zbl 1350.18011
[4] J. N. Alonso Álvarez, J. M. Fernández Vilaboa and R. González Rodríguez, Weak Hopf quasigroups, Asian J. Math. 20 (2016), no. 4, 665-693. · Zbl 1395.16033
[5] J. N. Alonso Álvarez, J. M. Fernández Vilaboa and R. González Rodríguez, Quasigroupoids and weak Hopf quasigroups, J. Algebra 568 (2021), 408-436. · Zbl 1462.16032
[6] J. Bénabou, Introduction to bicategories, Reports of the Midwest Category Seminar, Springer, Berlin (1967), 1-77. · Zbl 1375.18001
[7] G. Böhm, J. Gómez-Torrecillas and E. López-Centella, On the category of weak bialgebras, J. Algebra 399 (2014), 801-844. · Zbl 1317.18011
[8] G. Böhm, F. Nill and K. Szlachányi, Weak Hopf algebras. I. Integral theory and C^*-structure, J. Algebra 221 (1999), no. 2, 385-438. · Zbl 0949.16037
[9] H. Brandt, Über eine Verallgemeinerung des Gruppenbegriffes, Math. Ann. 96 (1927), no. 1, 360-366. · JFM 52.0110.09
[10] R. H. Bruck, Contributions to the theory of loops, Trans. Amer. Math. Soc. 60 (1946), 245-354. · Zbl 0061.02201
[11] O. Chein, Moufang loops of small order. I, Trans. Amer. Math. Soc. 188 (1974), 31-51. · Zbl 0286.20088
[12] S. Eilenberg and S. MacLane, Natural isomorphisms in group theory, Proc. Natl. Acad. Sci. USA 28 (1942), 537-543. · Zbl 0061.09203
[13] S. Eilenberg and S. MacLane, General theory of natural equivalences, Trans. Amer. Math. Soc. 58 (1945), 231-294. · Zbl 0061.09204
[14] P. Etingof, D. Nikshych and V. Ostrik, On fusion categories, Ann. of Math. (2) 162 (2005), no. 2, 581-642. · Zbl 1125.16025
[15] J. Grabowski, An introduction to loopoids, Comment. Math. Univ. Carolin. 57 (2016), no. 4, 515-526. · Zbl 1413.20037
[16] J. Grabowski and Z. Ravanpak, Nonassociative analogs of Lie groupoids, Differential Geom. Appl. 82 (2022), Paper No. 101887. · Zbl 1500.22002
[17] P. Hahn, Haar measure for measure groupoids, Trans. Amer. Math. Soc. 242 (1978), 1-33. · Zbl 0343.43003
[18] T. Hayashi, Face algebras. I. A generalization of quantum group theory, J. Math. Soc. Japan 50 (1998), no. 2, 293-315. · Zbl 0908.16032
[19] J. Klim and S. Majid, Hopf quasigroups and the algebraic 7-sphere, J. Algebra 323 (2010), no. 11, 3067-3110. · Zbl 1200.81087
[20] D. Nikshych and L. Vainerman, Finite quantum groupoids and their applications, New Directions in Hopf Algebras, Math. Sci. Res. Inst. Publ. 43, Cambridge University, Cambridge (2002), 211-262. · Zbl 1026.17017
[21] T. Yamanouchi, Duality for generalized Kac algebras and a characterization of finite groupoid algebras, J. Algebra 163 (1994), no. 1, 9-50. · Zbl 0830.46047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.