×

Global algebraic \(K\)-theory. (English) Zbl 1520.19003

Summary: We introduce a global equivariant refinement of algebraic \(K\)-theory; here ‘global equivariant’ refers to simultaneous and compatible actions of all finite groups. Our construction turns a specific kind of categorical input data into a global \(\Omega\)-spectrum that keeps track of genuine \(G\)-equivariant infinite loop spaces, for all finite groups \(G\). The resulting global algebraic \(K\)-theory spectrum is a rigid way of packaging the representation K-theory, or ‘Swan \(K\)-theory’ into one highly structured object.
{© 2022 The Authors. Journal of Topology is copyright © London Mathematical Society.}

MSC:

19D23 Symmetric monoidal categories
18F25 Algebraic \(K\)-theory and \(L\)-theory (category-theoretic aspects)
55P48 Loop space machines and operads in algebraic topology
55P91 Equivariant homotopy theory in algebraic topology
55Q91 Equivariant homotopy groups

References:

[1] M. G.Barratt, A free group functor for stable homotopy, Algebraic topology (Proc. Sympos. Pure Math., XXII, Univ. Wisconsin, Madison, Wis., 1970), Amer. Math. Soc., Providence, RI, 1971, pp. 31-35. · Zbl 0242.55015
[2] M. G.Barratt and P. J.Eccles, \( \Gamma^+\)‐structures-I: A free group functor for stable homotopy theory, Topology13 (1974), 25-45. · Zbl 0292.55010
[3] M. G.Barratt and S. B.Priddy, On the homology of non‐connected monoids and their associated groups, Comment. Math. Helv.47 (1972), 1-14. · Zbl 0262.55015
[4] C.Barwick, Spectral Mackey functors and equivariant algebraic K‐theory (I), Adv. Math.304 (2017), 646-727. · Zbl 1348.18020
[5] C.Barwick, S.Glasman, and J.Shah, Spectral Mackey functors and equivariant algebraic K‐theory (II), Tunis. J. Math.2 (2020), 97-146. · Zbl 1461.18009
[6] S.Bouc, Foncteurs d’ensembles munis d’une double action, J. Algebra183 (1996), 664-736. · Zbl 0858.19001
[7] G.Carlsson, C.Douglas, and B.Dundas, Higher topological cyclic homology and the Segal conjecture for tori, Adv. Math.226 (2011), 1823-1874. · Zbl 1223.55004
[8] A.Dress and A. O.Kuku, A convenient setting for equivariant higher algebraic K‐theory, Algebraic K‐theory, Part I (Oberwolfach, 1980), Lecture Notes in Mathematics, vol. 966, Springer, Berlin‐New York, 1982, pp. 59-68. · Zbl 0508.18003
[9] A. D.Elmendorf and M. A.Mandell, Permutative categories, multicategories and algebraic K‐theory, Algebr. Geom. Topol.9 (2009), 2391-2441. · Zbl 1205.19003
[10] Z.Fiedorowicz, H.Hauschild, and J. P.May, Equivariant algebraic K‐theory, Algebraic K‐theory, Part II (Oberwolfach, 1980), Lecture Notes in Mathematics, vol. 967, Springer, Berlin‐New York, 1982, pp. 23-80. · Zbl 0505.55015
[11] D. R.Grayson, Quillen’s work in algebraic \(K\)‐theory, J. K‐Theory11 (2013), 527-547. · Zbl 1291.19001
[12] B. J.Guillou and J. P.May, Equivariant iterated loop space theory and permutative \(G\)‐categories, Algebr. Geom. Topol.17 (2017), 3259-3339. · Zbl 1394.55008
[13] H.Hauschild, Äquivariante Konfigurationsräume und Abbildungsräume, Topology Symposium, Siegen 1979 (Proc. Sympos., Univ. Siegen, Siegen, 1979), Lecture Notes in Mathematics, 788, Springer, Berlin‐New York, 1980, pp. 281-315. · Zbl 0441.55009
[14] M.Hausmann, \(G\)‐symmetric spectra, semistability and the multiplicative norm, J. Pure Appl. Algebra221 (2017), 2582-2632. · Zbl 1420.55023
[15] M.Hausmann, Symmetric spectra model global homotopy theory of finite groups, Algebr. Geom. Topol.19 (2019), 1413-1452. · Zbl 1418.55006
[16] M.Hausmann and D.Ostermayr, Filtrations of global equivariant \(K\)‐theory, Math. Z.295 (2020), 161-210. · Zbl 1440.19008
[17] M.Hill, M.Hopkins, and D.Ravenel, On the nonexistence of elements of Kervaire invariant one, Ann. of Math.184 (2016), 1-262. · Zbl 1366.55007
[18] M.Hovey, B.Shipley, and J.Smith, Symmetric spectra, J. Amer. Math. Soc.13 (2000), 149-208. · Zbl 0931.55006
[19] T.Lenz, \(G\)‐Global homotopy theory and algebraic K‐theory, arXiv:2012.12676.
[20] L. G.Lewis, Jr, When projective does not imply flat, and other homological anomalies, Theory Appl. Categ.5 (1999), 202-250. · Zbl 0930.18006
[21] S.Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5. Springer, New York, 1998, xii+314 pp. · Zbl 0906.18001
[22] M. A.Mandell, Equivariantsymmetric spectra, Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic K‐theory, Contemporary Mathematics, vol. 346, Amer. Math. Soc., Providence, RI, 2004, pp. 399-452. · Zbl 1074.55003
[23] M. A.Mandell and J. P.May, Equivariant orthogonal spectra and \(S\)‐modules, Mem. Amer. Math. Soc.159 (2002), no. 755, x+108 pp. · Zbl 1025.55002
[24] M. A.Mandell, An inverse K‐theory functor, Doc. Math.15 (2010), 765-791. · Zbl 1227.19003
[25] J. P.May, \(E_\infty\) spaces, group completions, and permutative categories, New developments in topology (Proc. Sympos. Algebraic Topology, Oxford, 1972), London Mathematical Society Lecture Note Series, vol. 11, Cambridge Univ. Press, London, 1974, pp. 61-93. · Zbl 0281.55003
[26] J. P.May, M.Merling, and A. M.Osorno, Equivariant infinite loop space theory, I. The space level story, arXiv:1704.03413.
[27] M. C.McCord, Classifying spaces and infinite symmetric products, Trans. Amer. Math. Soc.146 (1969), 273-298. · Zbl 0193.23604
[28] M.Merling, Equivariant algebraic K‐theory of \(G\)‐rings, Math. Z.285 (2017), 1205-1248. · Zbl 1365.19007
[29] D.Ostermayr, Equivariant \(\Gamma \)‐spaces, Homology Homotopy Appl.18 (2016), 295-324. · Zbl 1350.55016
[30] S. B.Priddy, On \(\Omega^\infty S^\infty\) and the infinite symmetric group, Algebraic topology (Proc. Sympos. Pure Math., XXII, Univ. Wisconsin, Madison, Wis., 1970), Amer. Math. Soc., Providence, RI, 1971, pp. 217-220. · Zbl 0242.55011
[31] D.Quillen, Cohomology of groups, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2, Gauthier‐Villars, Paris, 1971, pp. 47-51. · Zbl 0225.18011
[32] S.Sagave and S.Schwede, Homotopy invariance of convolution products, Int. Math. Res. Not. IMRN (2021), no. 8, 6246-6292. · Zbl 1480.55020
[33] C.Schlichtkrull and M.Solberg, Braided injections and double loop spaces, Trans. Amer. Math. Soc.368 (2016), 7305-7338. · Zbl 1345.18006
[34] S.Schwede, Global homotopy theory, New Mathematical Monographs, vol. 34, Cambridge University Press, Cambridge, 2018, xviii+828 pp. · Zbl 1451.55001
[35] G.Segal, Categories and cohomology theories, Topology13 (1974), 293-312. · Zbl 0284.55016
[36] N.Shimada and K.Shimakawa, Delooping symmetric monoidal categories, Hiroshima Math. J.9 (1979), 627-645. · Zbl 0424.55007
[37] K.Shimakawa, Infinite loop \(G\)‐spaces associated to monoidal \(G\)‐graded categories, Publ. Res. Inst. Math. Sci.25 (1989), 239-262. · Zbl 0677.55013
[38] R. E.Staffeldt, On fundamental theorems of algebraic \(K\)‐theory, K‐Theory2 (1989), 511-532. · Zbl 0665.18010
[39] M.Stolz, Equivariant structure on smash powers of commutative ring spectra, Ph.D. thesis, University of Bergen, 2011.
[40] R. W.Thomason, Symmetric monoidal categories model all connective spectra, Theory Appl. Categ.1 (1995), 78-118. · Zbl 0876.55009
[41] T.tom Dieck, Transformation groups, De Gruyter Studies in Mathematics, vol. 8, Walter de Gruyter & Co., Berlin, 1987, x+312 pp. · Zbl 0611.57002
[42] F.Waldhausen, Algebraic K‐theory of spaces, Algebraic and geometric topology (New Brunswick, N.J., 1983), Lecture Notes in Mathematics, 1126, Springer, Berlin, 1985, pp. 318-419. · Zbl 0579.18006
[43] P.Webb, Two classifications of simple Mackey functors with applications to group cohomology and the decomposition of classifying spaces, J. Pure Appl. Algebra88 (1993), 265-304. · Zbl 0787.55012
[44] C.Weibel, The development of algebraic K‐theory before 1980, Algebra, K‐theory, groups, and education (New York, 1997), Contemporary Mathematics, vol. 243, Amer. Math. Soc., Providence, RI, 1999, pp. 211-238. · Zbl 0941.19003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.