×

Extended cyclic codes, maximal arcs and ovoids. (English) Zbl 1519.94242

Suppose \(q=2^h\) to be an even prime power. Then there exist \([q+2,3,q]\) MDS codes and these codes correspond to the projective system of the points of a hyperoval in the finite projective plane \(\mathrm{PG}(2,q)\). In the paper under review, extended cyclic codes arising from a construction of C. Ding [Designs from linear codes. Hackensack, NJ: World Scientific (2019; Zbl 1408.94003)] are considered and the question of which hyperovals might be obtained in that way is addressed. In particular, the authors first show that extended cyclic codes with parameters \([q+2,3,q]\) are equivalent to codes arising from regular hyperovals. Next, they extend their result to show that \([qt-q+t,3,qt-q]\) extended cyclic codes (with \(1<t<q\)) where \(q\) is a power of \(t\) correspond to cyclic Denniston maximal arcs. Finally, these results are extended to MDS codes of dimension \(4\), by proving that a cyclic code over \({\mathbb F}_q\) of parameters \([q^2+1,4,q^2 -q]\) is equivalent to an ovoid code obtained from an elliptic quadric in \(\mathrm{PG}(3,q)\).

MSC:

94B15 Cyclic codes
05B25 Combinatorial aspects of finite geometries
51E15 Finite affine and projective planes (geometric aspects)
51E21 Blocking sets, ovals, \(k\)-arcs
51E22 Linear codes and caps in Galois spaces

Citations:

Zbl 1408.94003

References:

[1] Abatangelo, V.; Larato, B., A characterization of Denniston’s maximal arcs, Geom. Dedicata, 30, 2, 197-203 (1989) · Zbl 0674.51007 · doi:10.1007/BF00181551
[2] Abdukhalikov, K., Bent functions and line ovals, Finite Fields Appl., 47, 94-124 (2017) · Zbl 1401.51005 · doi:10.1016/j.ffa.2017.06.002
[3] Abdukhalikov, K., Hyperovals and bent functions, Eur. J. Comb., 79, 123-139 (2019) · Zbl 1419.51008 · doi:10.1016/j.ejc.2019.01.003
[4] Ball, S., A Course in Algebraic Error-Correcting Codes (2020), New York: Springer, New York · Zbl 1454.94142 · doi:10.1007/978-3-030-41153-4
[5] Bierbrauer, J., Introduction to Coding Theory (2017), Boca Raton, FL: CRC Press, Boca Raton, FL · Zbl 1416.94002
[6] Calderbank, R.; Kantor, WM, The geometry of two-weight codes, Bull. Lond. Math. Soc., 18, 2, 97-122 (1986) · Zbl 0582.94019 · doi:10.1112/blms/18.2.97
[7] Denniston, RHF, Some maximal arcs in finite projective planes, J. Comb. Theory, 6, 317-319 (1969) · Zbl 0165.23602 · doi:10.1016/S0021-9800(69)80095-5
[8] Ding, C.: A family of ovoids in \(PG(3,2^m)\) from cyclic codes. arXiv:1802.03534
[9] De Winter, S.; Ding, C.; Tonchev, VD, Maximal arcs and extended cyclic codes, Des. Codes Cryptogr., 87, 4, 807-816 (2019) · Zbl 1407.05030 · doi:10.1007/s10623-018-0514-1
[10] Ding, C.: Designs from Linear Codes. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2019) · Zbl 1408.94003
[11] Hirschfeld, JWP, Projective Geometries over Finite Fields (1999), Oxford: Oxford Univ. Press, Oxford · Zbl 0418.51002
[12] Huffman, WC; Pless, V., Fundamentals of Error-Correcting Codes (2003), Cambridge: Cambridge University Press, Cambridge · Zbl 1191.94107 · doi:10.1017/CBO9780511807077
[13] Shult, E.E., Thas, J.A.: Constructions of Polygons from Buildings. Proc. Lond. Math. Soc. 71(2), 397-440 (1995). · Zbl 0835.51002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.