×

\(p\)th moment polynomial input-to-state stability of switched neutral pantograph stochastic hybrid systems with Lévy noise. (English) Zbl 1519.93191

The paper studies stability properties of a class of switched neutral pantograph stochastic hybrid systems with Lévy noise of the form: \[ d[x(t)-D_{\xi(t)}(x(\rho t))] = f_{\xi(t)}(x(t), x(\rho t), u(t), t)dt + g_{\xi(t)}(x(t), x(\rho t), u(t), t)\] \[ dw(t) +\int_{\mathbb R}h_{\xi(t)}(x(t), x(\rho t), u(t), t, e)N(dt,de), \] where \(t\geq 0\), \(\rho\in(0,1)\), \(u\in \mathcal L_\infty^d\) stands for the disturbance, \(x(t)\in\mathbb R^n\) stands for the system state at time \(t\), \(\xi:\mathbb R^+ \to \mathcal N:=\{1,2,\ldots, N\}\) denotes the switching signal, functions \(f_i:\mathbb R^n \times \mathbb R^n \times \mathbb R^d \times \mathbb R^+ \to \mathbb R^n\), \(g_i:\mathbb R^n \times \mathbb R^n \times \mathbb R^d \times \mathbb R^+ \to \mathbb R^n\), \(h_i:\mathbb R^n \times \mathbb R^n \times \mathbb R^d \times \mathbb R^+ \times \mathbb R \to \mathbb R^n\) are continuous functions for all \(I\in\mathcal N\). Provided that all dynamical subsystems are input-to-state stability and under the linear growth hypothesis, sufficient conditions are established for the \(p\)-th (\(p \geq 1\)) moment polynomial integral input-to-state stability and \((t+1)^{\theta_0}\)-weighted integral input-to-state stability of the system.

MSC:

93D25 Input-output approaches in control theory
93E15 Stochastic stability in control theory
93C30 Control/observation systems governed by functional relations other than differential equations (such as hybrid and switching systems)
60G51 Processes with independent increments; Lévy processes
Full Text: DOI

References:

[1] Aziz, Z.; Hassane, B.; Chafai, I., Delay-dependent stability of highly nonlinear hybrid stochastic systems with Lévy noise, Nonlinear Studies, 27, 4, 879-896 (2020) · Zbl 1487.34158
[2] Cheng, G.; Yang, Y.; Li, J., On input-to-state stability of discrete-time switched non-linear time-varying systems, IEEE Transactions on Automatic Control, 64, 12, 5214-5221 (2019) · Zbl 1482.93523 · doi:10.1109/TAC.9
[3] Damak, H., Input-to-state stability and integral input-to-state stability of non-autonomous infinite-dimensional systems, International Journal of Systems Science, 52, 10, 2100-2113 (2021) · Zbl 1483.93534 · doi:10.1080/00207721.2021.1879306
[4] Dong, H.; Luo, M.; Xiao, M., Almost sure synchronization for nonlinear complex stochastic networks with Lévy noise, Nonlinear Dynamics, 95, 2, 957-969 (2019) · Zbl 1439.62205 · doi:10.1007/s11071-018-4607-1
[5] Gao, L.; Zhang, M.; Yao, X., Stochastic input-to-state stability for impulsive switched stochastic nonlinear systems with multiple jumps, International Journal of Systems Science, 50, 9, 1860-1871 (2019) · Zbl 1483.93681 · doi:10.1080/00207721.2019.1645233
[6] Guo, P.; Liu, M.; He, Z.; Jia, H., Stability of numerical solutions for the stochastic pantograph differential equations with variable step size, Journal of Mathematical Analysis and Applications, 388 (2021) · Zbl 1466.65014 · doi:10.1016/j.cam.2020.113303
[7] Hale, J. K.; Lunel, S. M. V., Introduction to functional differential equation (1993), Springer · Zbl 0787.34002
[8] Li, P.; Li, J.; Lu, J., Input-to-state stability of impulsive delay systems with multiple impulses, IEEE Transactions on Automatic Control, 66, 1, 362-368 (2021) · Zbl 1536.93741 · doi:10.1109/TAC.9
[9] Li, X.; Zhang, T.; Wu, J., Input-to-state stability of impulsive systems via event-Triggered impulsive control, IEEE Transactions on Cybernetics (2021) · doi:10.1109/TCYB.2020.3044003
[10] Liu, L.; Mao, X.; Cao, J., Razumikhin-type theorem for stochastic functional differential systems via vector Lyapunov function, Journal of Mathematical Analysis and Applications, 479, 2, 1986-2006 (2019) · Zbl 1464.34105 · doi:10.1016/j.jmaa.2019.07.037
[11] Luo, Q.; Gong, Y.; Jia, C., Stability of gene regulatory networks with Lévy noise, Science China Information Sciences, 60, 7 (2017) · doi:10.1007/s11432-016-0526-8
[12] Mao, X., Differential equations and their applications (2007), Horwood Publishers · Zbl 1138.60005
[13] Ning, C.; He, Y.; Wu, M.; Liu, Q., pth moment exponential stability of neutral stochastic differential equations driven by Lévy, Journal of the Franklin Institute, 349, 9, 2925-2933 (2012) · Zbl 1264.93263 · doi:10.1016/j.jfranklin.2012.08.008
[14] Shapira, A.; Tyomkyn, M., Quasirandom graphs and the pantograph equation, American Mathematical Monthly, 128, 7, 630-639 (2021) · Zbl 1476.05181 · doi:10.1080/00029890.2021.1926187
[15] Silva, L. F. P.; Leite, V. J. S.; Castelan, E. B.; Souza, C. D., Regional input-to-state stabilization of fuzzy state-delayed discrete-time systems with saturating actuators, Information Sciences, 557, 250-267 (2021) · Zbl 1489.93105 · doi:10.1016/j.ins.2020.12.043
[16] Song, Y.; Zeng, Z.; Zhang, T., The pth moment asymptotical ultimate boundedness of pantograph stochastic differential equations with time-varying coeffcients, Applied Mathematics Letters, 121 (2021) · Zbl 1484.34182 · doi:10.1016/j.aml.2021.107449
[17] Sontag, E. D., Smooth stabilization implies coprime factorization, IEEE Transactions on Automatic Control, 34, 4, 435-443 (1989) · Zbl 0682.93045 · doi:10.1109/9.28018
[18] Sontag, E. D., Comments on integral variants of ISS, System & Control Letter, 34, 1-2, 93-100 (2008) · Zbl 0902.93062 · doi:10.1016/S0167-6911(98)00003-6
[19] Wang, P.; Guo, W.; Su, H., Improved input-to-state stability analysis of impulsive stochastic systems, IEEE Transactions on Automatic Control (2021) · Zbl 1537.93631 · doi:10.1109/TAC.2021.3075763
[20] Xu, L.; Hu, H., Boundedness analysis of stochastic pantograph differential systems, Applied Mathematics Letters, 111 (2021) · Zbl 1466.60124 · doi:10.1016/j.aml.2020.106630
[21] Yang, H.; Yang, Z.; Wang, P.; Han, D., Mean-square stability analysis for nonlinear stochastic pantograph equations by transformation approach, Journal of Mathematical Analysis and Applications, 479, 1, 977-986 (2019) · Zbl 1428.34125 · doi:10.1016/j.jmaa.2019.06.061
[22] Zhang, Y.; Yang, Z.; Huang, C.; Park, J. H., Input-to-state stability of hybrid stochastic systems with unbounded delays and impulsive effects, Nonlinear Dynamics, 104, 4, 3753-3770 (2021) · doi:10.1007/s11071-021-06480-6
[23] Zhou, L.; Ding, H.; Xiao, X., Input-to-state stability of discrete-time switched nonlinear systems with generalized switching signals, Applied Mathematics and Computation, 392 (2021) · Zbl 1508.93251 · doi:10.1016/j.amc.2020.125727
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.